Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme","name":"bathymetry and elevation"} (X) > Contacts: {oldPartyId:4213} (X)

71 results (73ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Theme )
View Results as: JSON ATOM CSV
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is the survey area footprint for the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The survey footprint represents a LAS dataset of terrestrial light detection and ranging (lidar) of beach topography and multibeam sonar bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. The surveys were completed July 20 - July 23, 2020.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. A terrestrial lidar unit was used to collect shoreline elevation points. These datasets were highly desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
This dataset consists of two files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (lidar) data representing the beach and near-shore topography of Lake Superior at the Duluth Entry, Duluth, Minnesota. The point data is the same as that in the LAS dataset used to create a digital elevation model (DEM) of the approximately1.87 square kilometer surveyed area. Lidar data were collected July 28, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected July 28-29, 2020 using a Norbit integrated wide band multibeam system (iWBMSc) sonar unit. Methodology for data collection similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.
thumbnail
This dataset represents elevation data of the beach topography and near-shore bathymetry before placing dredge spoils on the beach at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The data was acquired using a lidar sensor, single-beam and multibeam sonars. The dataset includes DEMs of the terrestrial beach areas and topobathy (combined terrestrial and bathymetry), LAS and XYZ files of lidar, single-beam, and multibeam point data, and 2-ft contours. Data were collected in cooperation with the U.S. Army Corps of Engineers (USACE), Detroit District, to evaluate movement of placed material and overall change of near-shore bathymetry after beach nourishment.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected July 28, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected July 28-29, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar...
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. Contours are an outline or boundary of specified depth intervals. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.


map background search result map search result map Illinois River, Brandon, Multibeam Bathymetry, May 2018 SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 Topobathy Depth Contours (vector) SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Duluth Entry: XYZ files of lidar and multibeam sonar data collected at Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019 Illinois River, Peoria Reach Priority Areas, Multibeam Bathymetry, September 2019 Illinois River, Peoria Side Channel - Chillicothe Slough, Multibeam Bathymetry, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands, Multibeam Bathymetry, September 2019 Illinois River, Marseilles, Bathymetric Hillshade, 2017-2018 Illinois River, Marseilles, Bathymetric Ruggedness Index, 2017-2018 Illinois River, Marseilles, Bathymetric Slope, 2017-2018 Illinois River, Starved Rock, Bathymetric Hillshade, 2017-2018 Illinois River, Brandon, Bathymetric Hillshade, May 2018 Illinois River, Brandon, Bathymetric Terrain Ruggedness Index, May 2018 Beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 Illinois River, Peoria Side Channel - Upper Twin Islands, Multibeam Bathymetry, September 2019 SACN Osceola Boat Landing: 2019 Topobathy Depth Contours (vector) SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: XYZ files of lidar and multibeam sonar data collected at Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, July 2020 Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Illinois River, Brandon, Bathymetric Hillshade, May 2018 Illinois River, Brandon, Bathymetric Terrain Ruggedness Index, May 2018 Illinois River, Brandon, Multibeam Bathymetry, May 2018 Illinois River, Starved Rock, Bathymetric Hillshade, 2017-2018 Illinois River, Marseilles, Bathymetric Hillshade, 2017-2018 Illinois River, Marseilles, Bathymetric Ruggedness Index, 2017-2018 Illinois River, Marseilles, Bathymetric Slope, 2017-2018 Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019 Illinois River, Peoria Reach Priority Areas, Multibeam Bathymetry, September 2019