Skip to main content
Advanced Search

Filters: Contacts: Seth Ackerman (X) > Types: Map Service (X)

40 results (49ms)   

View Results as: JSON ATOM CSV
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Charles Point, Coastal and Marine Geology Program, DEM, All tags...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Coastal and Marine Geology Program, DEM, Federal Emergency Management Agency, All tags...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Beach Haven, CMHRP, Coastal and Marine Hazards and Resources Program, DOI, Department of the Interior, All tags...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aquinnah, Atlantic Ocean, Backscatter, Bathymetry, CMGP, All tags...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: 3200, 424, 512i, Aquinnah, Atlantic Ocean, All tags...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Beach Haven, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 32-bit GeoTIFF, 512i, Aquinnah, Atlantic Ocean, CMGP, All tags...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Charles Point, Coastal and Marine Geology Program, Crescent Bar, All tags...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points;...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 3DR Solo quadcopter, CMGP, Chimney Bluffs, Chimney Bluffs State Park, Coastal and Marine Geology Program, All tags...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part...
thumbnail
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of the sea floor were taken at all 26 sites. These survey data are used to characterize the sea floor by identifying sediment-texture, seabed morphology, and underlying geologic structure and stratigraphy. Data collected...


map background search result map search result map Multibeam Echosounder, Reson T-20P deep site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83) Multibeam Echosounder, Reson T-20P bathymetry overview (10-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum) Multibeam Echosounder, Reson T-20P tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) Seismic Reflection, Geometrics multi-channel streamer tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) Geospatial Data Layers of Shallow Geology, Sea-Floor Texture, and Physiographic Zones from the Inner Continental Shelf of Martha’s Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point Charles Point digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Lake Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (GeoTIFF image) Lake Bluffs digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Chimney Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017 (GeoTIFF image) Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Physiographic Zones of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Interpretation of sea floor geologic units for offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts 2-meter bathymetric data collected in 2016 by the U.S. Geological Survey off Town Neck Beach Sandwich, Massachusetts during field activity 2016-017-FA (bathymetry GeoTIFF) Photographs and locations of bottom still imagery collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (JPEG images, point shapefile, and CSV file) Grain-size analysis results and locations of sediment samples ollected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (simplified point shapefile and CSV files) Sound velocity profile data from an AML Oceanographic MVP30 collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (PNG images, CSV text, ASVP text, and point shapefile, GCS WGS 84) Chirp seismic reflection data from the Edgetech 512i collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS field activity 2018-001-FA (shotpoints point shapefile, survey trackline shapefile, PNG profile images, and SEG-Y trace data). Multibeam Echosounder, Reson T-20P tracklines collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (Esri polyline shapefile, GCS WGS 84) Multibeam backscatter data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 18N, WGS 84, 2 meter resolution) Chimney Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017 (GeoTIFF image) Charles Point digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Lake Bluffs digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Lake Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (GeoTIFF image) Multibeam Echosounder, Reson T-20P deep site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83) Grain-size analysis results and locations of sediment samples ollected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (simplified point shapefile and CSV files) Photographs and locations of bottom still imagery collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (JPEG images, point shapefile, and CSV file) Sound velocity profile data from an AML Oceanographic MVP30 collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (PNG images, CSV text, ASVP text, and point shapefile, GCS WGS 84) Chirp seismic reflection data from the Edgetech 512i collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS field activity 2018-001-FA (shotpoints point shapefile, survey trackline shapefile, PNG profile images, and SEG-Y trace data). Multibeam Echosounder, Reson T-20P tracklines collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (Esri polyline shapefile, GCS WGS 84) Multibeam backscatter data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 18N, WGS 84, 2 meter resolution) Physiographic Zones of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Interpretation of sea floor geologic units for offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Geospatial Data Layers of Shallow Geology, Sea-Floor Texture, and Physiographic Zones from the Inner Continental Shelf of Martha’s Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point Seismic Reflection, Geometrics multi-channel streamer tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) Multibeam Echosounder, Reson T-20P tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) Multibeam Echosounder, Reson T-20P bathymetry overview (10-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum)