Skip to main content
Advanced Search

Filters: partyWithName: Geology, Geophysics, and Geochemistry Science Center (X) > partyWithName: Burke J Minsley (X)

32 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. Grids were discretized in the horizontal dimension to align with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark et al. 2018), and vertically discretized into both 5 meter (m) depth slices and 5 m elevation slices. To support hydrogeologic and geologic studies within the MAP region and the Mississippi River Valley Alluvial aquifer (MRVA), derivative products were calculated from the 3D resistivity...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In April 2018, seven boreholes were emplaced to depths of 2.3-2.5 meters (m) to allow for repeat logging with downhole nuclear magnetic resonance (NMR) to quantify the spatial and temporal variations in unfrozen water content within active-layer and permafrost soils. NMR data were collected on ten separate occasions between April 2018 and October 2020. In June...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during July and August 2022 over a distance of 3,588.5 line kilometers covering Delaware Bay and surrounding regipons in New Jersey and Delaware. Data were collected as part of the USGS Delaware River Basin Next Generation Water Observing Systems (NGWOS) project to improve understanding of groundwater salinity distributions near Delaware Bay. The survey was primarily funded by the USGS, with partial support through collaboration with the University of Delaware to extend data collection to parts of Rehoboth Bay and Indian River Bay. Data were acquired by SkyTEM Canada Inc. with the SkyTEM 304M time-domain helicopter-borne electromagnetic system...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an all-terrain vehicle (ATV), with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square-kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures and averaged to regular output soundings every 5 m along survey lines. The processed data were inverted to recover models of electrical resistivity structure as a function of depth...
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021, and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. To calculate estimates of streambed properties across the MAP region, e.g. the relative connection potential between streams and the adjacent Mississippi River Valley Alluvial aquiver (MRVA), a new 3D grid of electrical resistivity was generated for 2 meter (m) depth layers and only shallow depths (0-30 m). The horizontal dimension aligns with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark...
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021, and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. First, the base of the Mississippi River Valley Alluvial aquifer (MRVA) was updated using the AEM resistivity data, both borehole and manual picks, and a supervised machine learning algorithm. The 3D resistivity elevation grid was then intersected with the 2018 potentiometric surface and the new base of MRVA surface to isolate the saturated MRVA extent and generate estimates of the hydrogeologic framework and...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Surface geophysical surveys were conducted from 2016 to 2018 in the greater East River Watershed near Crested Butte Colorado with a focused effort in Redwell Basin as part of a broader study of the role of bedrock groundwater in the hydrogeology of mineralized mountain watersheds. Five electrical resistivity tomography (ERT) profiles were acquired within Redwell Basin and Brush Creek to map geologic structure at depths up to 40 meters, depending on the subsurface resistivity, using the Advanced Geosciences, Inc. SuperSting R8 resistivity meter. This data release includes the raw and processed resistivity data as well as inverted resistivity models. All are provided as digital data, and data fields for each file...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110-222 meters (m) in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf...
thumbnail
This data release consists of 1,984 line-kilometers of airborne electromagnetic (AEM), magnetic data and radiometric data collected from October to November 2017 in the upper East River and surrounding watersheds in central Colorado. The U.S. Geological Survey contracted Geotech Ltd. to acquire these data as part of regional investigations into the geologic structure and hydrologic framework of the area. The AEM data have been inverted to produce a series of regional cross-sections that constrain the electrical properties of the subsurface to a depth of ~500m. Data were acquired using the VTEM ET time-domain helicopter-borne electromagnetic system along flight lines that cross important geological structures over...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument monitoring sites (APEX1-APEX9) were established in April 2018. To quantify permafrost and thaw zone characteristics along the instrumented gradient, electrical resistivity tomography (ERT) data were collected in August 2018 along four 82 meter (m)-long transects between select sites: APEX1-3, APEX5-3, APEX5-7, and APEX6-8. Data were collected...


map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Airborne electromagnetic and magnetic survey of Delaware Bay and surrounding regions of New Jersey and Delaware, 2022 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018 (ver. 2.0, March 2024) Electrical Resistivity Tomography (ERT) Data Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain Mississippi Alluvial Plain (MAP): MRVA Properties Mississippi Alluvial Plain (MAP): Streambed Properties & Connectivity Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 Minimally processed AEM, magnetic and radiometric data APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Alaska permafrost characterization: Geophysical and related field data collected in 2021 Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Electrical Resistivity Tomography (ERT) Data Minimally processed AEM, magnetic and radiometric data Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018 (ver. 2.0, March 2024) Alaska permafrost characterization: Geophysical and related field data collected in 2021 Airborne electromagnetic and magnetic survey of Delaware Bay and surrounding regions of New Jersey and Delaware, 2022 Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Mississippi Alluvial Plain (MAP): MRVA Properties Mississippi Alluvial Plain (MAP): Streambed Properties & Connectivity Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain