Skip to main content
Advanced Search

Filters: partyWithName: Pacific Coastal and Marine Science Center (X) > partyWithName: Ann E Gibbs (X)

44 results (16ms)   

View Results as: JSON ATOM CSV
thumbnail
Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, a bottom-mounted frame equipped with a Nortek 1MHz Aquadopp, Solinst Levelogger, and HOBO temperature loggers measured currents, water levels, and water temperatures. Ground temperatures (maximum depth 3 meters...
thumbnail
Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, a bottom-mounted frame equipped with a Nortek 1MHz Aquadopp, Solinst Levelogger, and HOBO temperature loggers measured currents, water levels, and water temperatures. Ground temperatures (maximum depth 3 meters...
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
thumbnail
Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, a bottom-mounted frame equipped with a Nortek 1MHz Aquadopp, Solinst Levelogger, and HOBO temperature loggers measured currents, water levels, and water temperatures. Ground temperatures (maximum depth 3 meters...
thumbnail
This dataset consists of short-term (less than 37 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using an end point rate-of-change (epr) method based on available shoreline data between 1980 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.
thumbnail
This data release provides flooding extent polygons (flood masks) and depth values (flood points) based on wave-driven total water levels for 22 locations within the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands. For each of the 22 locations there are eight associated flood mask polygons and flood depth point files: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. These flood masks can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation...
Tags: American Samoa, CMHRP, CNMI, Cayo Vieques, Coastal and Marine Hazards and Resources Program, All tags...
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each bluff edge...
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the sheltered north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate rates of change.
thumbnail
This dataset consists of long-term (less than 68 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using a linear regression rate-of-change (lrr) method based on available shoreline data between 1948 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change...
thumbnail
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes barrier polygons attributed with morphological metrics from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s.
thumbnail
A seamless topographic-bathymetric digital elevation model for an area around Arey Lagoon, Alaska created from a combination of lidar elevation data collected in 2009, single-beam bathymetric data collected in 2011, and NOS sounding data collected in 1948.
thumbnail
Single-beam bathymetry data were collected in 2010 and 2011 in the nearshore waters around Barter Island, Arey Island, and within Arey Lagoon, Alaska. Measurements were made from a small boat or dinghy using one of three systems: a Humminbird 898 SI Fish Finder with integrated GPS (2010 and 2011), an Ohmex Sonarmite BT integrated with a Trimble GeoHX series GPS (2011), or a Garmin Sounder with integrated GPS (2011). Each system collected single-beam water depth with accuracies better than 4 meters (m) horizontal and 25 centimeters (cm) vertical.
This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to calculate bluff-change rates.
thumbnail
This data release presents orthoimagery and elevation data based on aerial imagery of the Alaska coastline between Icy Cape and Cape Prince of Wales. These data products and the source aerial imagery were generated by Fairbanks Fodar for the U.S. Geological Survey. Aerial imagery was collected in 2016 between August 29 and September 4 and extends from the shoreline to 400-4000 meters inland. Photographs were captured using a Nikon D800E mounted on a Cessna 170B. Data products were derived from aerial images and precise Global Positioning System (GPS) navigation data using structure-from-motion (SfM) techniques. This dataset includes point cloud data in LAZ format as well as orthoimagery and digital elevation models...
thumbnail
This dataset includes shorelines that span 68 years, from 1948 to 2016, for the north coast of Alaska from Icy Cape to Cape Prince of Wales. Shorelines were compiled from topographic survey sheets (T-sheets; National Oceanic and Atmospheric Administration (NOAA)) and aerial orthophotographs (U.S. Geological Survey (USGS) and Alaska High Altitude Photography (AHAP)). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the U.S. Geological Survey's National Assessment of Shoreline Change Project. Rates of long-term and short-term shoreline change were generated in a GIS using...
thumbnail
Six elevation point cloud files in LAZ format (compressed LAS binary data) are included in this data release: 3 raw point clouds of unclassified and unedited points and 3 modified point clouds that were spatially shifted and edited to remove outliers and spurious elevation values associated with moving water surfaces. An XYZ coordinate shift was applied to each data set in order to register the data sets to an earth-based datum established from surveyed ground control points. Points are unclassified and ground-reflected color values in the red-green-blue (RGB) schema are included. The horizontal coordinate system is WGS84, UTM Zone 7 North meters; vertical coordinates are relative to the WGS84 ellipsoid. Aerial...
thumbnail
Beach elevation profiles were measured along 29 shore-normal transects on and around Arey and Barter Islands, Alaska in August 2010 and July 2011. Profile data are available in a single comma-delimited file and a zip file including multiple .jpg images that show a visual representation of the individual profiles.
thumbnail
Beaches are a dynamic interface between water and land and are frequently subjected to a range of natural hazards, which include flooding, storm effects, and coastal erosion. The U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards across the Nation. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is one of the most commonly monitored indicators of environmental change and it is an easily understood feature marking the location of a beach through time. A principal component of the USGS national assessment of shoreline change has been to develop...
thumbnail
This dataset consists of rate-of-change statistics for the coastal bluffs and shorelines at Barter Island, Alaska, for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect bluff edges and shorelines establishing measurement points, which are then used to calculate change rates.
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate bluff-change rates.


map background search result map search result map National Assessment of Shoreline Change: A GIS compilation of updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S. Canadian border to Icy Cape Elevation point clouds of the north coast of Barter Island, Alaska acquired July 01 2014, September 07 2014, and July 05 2015 (LAZ file) Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands Shorelines from 1948 to 2016 for the north coast of Alaska, Icy Cape to Cape Prince Wales used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales Beach profile data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Single-beam bathymetry data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Islands, Alaska Wave time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Conductivity, temperature and depth time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Ground temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Seamless topo-bathy digital elevation model (DEM) of Arey Lagoon, Alaska Polygon shapefiles attributed with morphometric information for barrier islands and spits located along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019 A GIS compilation of vector shorelines and coastal bluff edge positions, and associated rate-of-change data for Barter Island, Alaska Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020 Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020 Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020 Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020 Elevation point clouds of the north coast of Barter Island, Alaska acquired July 01 2014, September 07 2014, and July 05 2015 (LAZ file) Wave time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Conductivity, temperature and depth time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Ground temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Beach profile data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020 Single-beam bathymetry data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Islands, Alaska A GIS compilation of vector shorelines and coastal bluff edge positions, and associated rate-of-change data for Barter Island, Alaska Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020 Seamless topo-bathy digital elevation model (DEM) of Arey Lagoon, Alaska Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the sheltered north coast of Alaska, from Icy Cape to Cape Prince of Wales Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales Shorelines from 1948 to 2016 for the north coast of Alaska, Icy Cape to Cape Prince Wales used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.4 transects with long-term linear regression rate calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales National Assessment of Shoreline Change: A GIS compilation of updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S. Canadian border to Icy Cape Polygon shapefiles attributed with morphometric information for barrier islands and spits located along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019 Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands