Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey (X) > partyWithName: Water Resources (X) > partyWithName: Amy L Read (X)

24 results (11ms)   

View Results as: JSON ATOM CSV
thumbnail
Actual evapotranspiration (ETa) values estimated for specified areas including 1) total county areas; 2) potentially irrigated areas within each county; and 3) mapped extents of irrigated lands within each county provided by some states. These ETa estimates were provided to the USGS National Water Use Science Project by the USGS Earth Resources Observation and Science (EROS) Center (Gabriel Senay and MacKenzie Friedrichs, written communication, 2/20/2017) and are based on 1-square kilometer resolution 2015 Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data analyzed through the operational Simplified Surface Energy Balance (SSEBop) model using methods of Senay and others (2013). Reference: Senay,...
thumbnail
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 17th and again on August 26th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were estimated via satellite imagery or verified in situ for 2014-2018, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2015 and 2017 as well as the Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to observe crop type, crop growing season, crop condition, and irrigation system characteristics. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating...
thumbnail
Observations of irrigated agricultural land within the San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin. Digitized field boundaries were used to locate crops for in situ verification twice in 2022; crop verification occurred first on May 18th and again on August 24th. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were...
thumbnail
Observations of irrigated agricultural land within the Lower San Pedro Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
This data release provides a monthly irrigation water use reanalysis for the period 2000-20 for all USGS Watershed Boundary Dataset of Subwatersheds (HUC12) in the conterminous United States (CONUS). Results include reference evapotranspiration (ETo), actual evapotranspiration (ETa), irrigated areas, consumptive use, and effective precipitation for each HUC12. ETo and ETa were estimated using the operational Simplified Surface Energy Balance (SSEBop, Senay and others, 2013; Senay and others, 2020) model executed in the OpenET (Melton and others, 2021) web-based application implemented in Google Earth Engine. Results provided by OpenET/SSEBop were summarized to hydrologic response units (HRUs) in the National Hydrologic...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Digitized field boundaries were used to locate crops for in situ verification once in 2022; crop verification occurred on June 2nd. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2021 on May 20th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2018 on July 17th, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2017 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ twice in 2017 on February 28th and July 17th, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2017 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation,...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/) were used to digitize field boundaries, as well as observe crop type, crop growing season, crop condition, and irrigation system characteristics. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified...
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 16th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle...
thumbnail
Observations of irrigated agricultural land within the Sacramento Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2021 on May 21st; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992...
thumbnail
Observations of irrigated agricultural land within the Sacramento Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2022 on May 31st; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program County Mosaic 2021 imagery for Arizona and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau...
thumbnail
This data release contains the output of the Irrigation Water Use Estimation Disaggregation and Downscaling Model (IWUEDD) along with the scripts and data resources (IWUEDD_basic.zip) required to replicate the output results. The IWUEDD is used to estimate monthly irrigation withdrawals and consumptive use for each 12-digit hydrologic unit code (HUC 12) subwatershed in the conterminous United States. The HUC 12-level estimates are separated into groundwater (GW), surface water (SW), groundwater and surface water combined (TW), and consumptive use (CU). The IWUEDD developed monthly estimates by disaggregating and downscaling previously published annual county-level irrigation withdrawal and consumptive use data complied...
Observations of irrigated agricultural land within the Butler Valley Groundwater Basin in Arizona. Crops were verified in situ twice in 2020 first on March 11th and again on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using...
Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Crops were verified in situ twice in 2020, first on May 20th and again on August 12th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2015 on April 23rd, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2015 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix...
thumbnail
Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2016 on August 1st, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2015 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix...
Observations of irrigated agricultural land within the Harquahala Irrigation Non-Expansion Area Groundwater Basin in Arizona. Crops were verified in situ three times in 2020 on first on March 11th, then on May 27th, and finally on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season...


map background search result map search result map 2015 calendar-year county-level estimates of actual evapotranspiration for the conterminous United States and Hawaii Estimated monthly water use for irrigation by 12-digit hydrologic unit in the conterminous United States for 2015 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014-2018 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2015 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2016 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2017 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2018 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Sacramento Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in Sacramento Valley Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Irrigation water use reanalysis for the 2000-20 period by HUC12, month, and year for the conterminous United States Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2020 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2015 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2016 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2017 Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2022 GIS file: Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2018 Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014-2018 Estimated crop irrigation water use withdrawals in San Simon Valley Groundwater Subbasin of the Safford Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2020 Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2022 Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 Irrigation water use reanalysis for the 2000-20 period by HUC12, month, and year for the conterminous United States Estimated monthly water use for irrigation by 12-digit hydrologic unit in the conterminous United States for 2015 2015 calendar-year county-level estimates of actual evapotranspiration for the conterminous United States and Hawaii