Skip to main content
Advanced Search

Filters: partyWithName: Jeffrey A Coe (X)

36 results (54ms)   

View Results as: JSON ATOM CSV
thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Wide-angle camera) is located near Station 1 on the opposite side of the basin with a broad view of the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al.,...
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
Subaerial landslides at the head of the Barry Arm fjord remain a tsunami threat for the Prince William Sound region in southern Alaska. Tasked RADARSAT-2 synthetic aperture radar (SAR) data from two ultrafine beam modes (2 m), U19 and U15, were used to measure landslide movement of slopes near the toe of the Barry Glacier between 21 May 2021 and 5 November 2021. Data were acquired every 24 days, with U19 beginning on 21 May 2021 and U15 beginning on 28 May 2021. For a few planned acquisition dates, scenes were not captured because of technical issues. Interferometric synthetic aperture radar (InSAR) deformation maps (interferograms) are provided in wrapped phase (line-of-sight (LOS) phase in radians between 0 and...
thumbnail
This data release contains four GIS shapefiles, one Google Earth kmz file, and five metadata files that summarize results from Interferometric Synthetic Aperture Radar (InSAR) analyses in the Glacier Bay region of Alaska and British Columbia. The principal shapefile (Moving_Ground) and the kmz file (GBRegionMovingGround) contain polygons delineating slow-moving (0.5-6 cm/year in the radar line-of-sight direction) landslides and subsiding fan deltas in the region. Landslides and fan deltas were identified from displacement signals captured by InSAR interferograms of Sentinel-1 C-band Synthetic Aperture Radar images. The images were acquired at 12-day intervals from June to October from 2018 to 2020. We applied the...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at two different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2015. Both cameras are located near the Upper Station (Station 1). One is located at the bridge...
Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km 2 area of the Colorado Front Range. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. Data in this project pertain to an area bounded by N 40.0° – 40.375° and W 105.25° – 105.625° which includes many of the areas where high concentrations of debris flows occurred. These data include a subset of a map of landslide and debris flow scarps (Coe and others, 2014) and raster grids derived from the National Elevation Dataset. These data were used to test a new, parallel implementation of the Transient Rainfall Infiltration and...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Middle camera) is located near Station 2. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the three cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from rain gauges (Michel et al., 2019). The complete videos for all the cameras are downloaded manually...
thumbnail
This data release includes 2014 time-series data from three debris-flow monitoring stations at Chalk Cliffs in Chaffee County, Colorado, USA. The data were collected to help identify the triggering conditions, magnitude, and mobility of debris flows at the site. The three stations are located sequentially along a channel draining the 0.3 km^2 study area. The Upper, Middle, and Lower stations have respective drainage areas of 0.06, 0.16, and 0.24 km^2. The location (UTM zone 13) of each station is: 396826E/4287851N (Upper), 396893E/ 4287815N (Middle), and 396929E/4287712N (Lower). See also “ChalkStationLocations.jpg” in the README.zip file. The 2014 data includes three types of time series: (1) 1-minute time series...
thumbnail
This data release contains model output from simulations presented in the associated Open-File Report (Barnhart and others, 2021). In this report, we present model results from four simulations (scenarios C-290, NC-290, C-689, NC-689, Table 1) of hypothetical rapid movement of landslides into adjacent fjord water at Barry Arm, Alaska using the D-Claw model (George and Iverson, 2014; Iverson and George, 2014). The basis for the four scenarios is described in Barnhart and others (2021). Table 1. Summary of four considered scenarios including key simulation input parameter values. Simulation input parameters Scenario name and description NC-290 C-290 NC-689 C-689 Symbol Units Description Smaller,...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). This "Child item" page includes videos of debris flows captured by one of the high-definition cameras at the monitoring site in Chalk Cliffs, CO. This camera (Bridge Camera) is located at Station 1 which is at the bridge cross section at the channel. The attached figure "station_and_camera_locations.png" provides an overview figure with the location of the two cameras and three stations along the channel. Video recording for all cameras is triggered using a rainfall threshold, derived from rainfall measurements from a rain gauge (Michel et al., 2019). The complete...
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...
thumbnail
On September 20, 2017, Hurricane Maria hit the U.S. territory of Puerto Rico as a category 4 storm. Heavy rainfall caused landslides in mountainous regions throughout the territory. This data release presents geospatial data describing the concentration of landslides generated by Hurricane Maria in Puerto Rico. We used post-hurricane satellite and aerial imagery collected between September 26, 2017 and October 8, 2017 to visually estimate the concentration of landslides over nearly the whole territory. This was done by dividing the territory into a grid with 4 square km cells (2 km x 2 km). Each 4 square km grid cell was classified as either containing no landslides, fewer than 25 landslides/ square km or more than...
thumbnail
During September 2017, Hurricane Maria caused widespread landsliding throughout mountainous regions of Puerto Rico, with more than 71,000 landslides being subsequently identified from aerial imagery (Hughes et al., 2019). Most landslides apparently mobilized as debris flows and occurred within soil (unconsolidated material overlying saprolite and bedrock) and saprolite overlying less-weathered rock (e.g., Bessette-Kirton et al., 2019a). To better understand the characteristics of Maria-triggered landslides, debris flows, and materials in which landslides occurred, we performed reconnaissance-level studies of 118 landslides, 46 soil exposures generally within landslide scars, 24 saprolite exposures, and 37 rock exposures....
thumbnail
On May 25th, 2014, a 54.5 Mm3 rock avalanche occurred in the West Salt Creek valley in western Colorado following heavy rainfall on top of snow (Coe and others, 2016a). The data in this project includes boulder density in 20-m x 20-m grid cells for the entire West Salt Creek rock avalanche deposit. The grid cells cover 2,154,800 m2, which accounts for nearly the entire surface of the deposit. We estimated boulder density by counting 1-m or larger diameter boulders of sedimentary rock that are visible in high-resolution Unmanned Aircraft System (UAS) imagery collected for the area in July of 2014 (Coe and others, 2016b). Basalt boulders were excluded from the count because field observations indicated that they generally...
thumbnail
On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation...
thumbnail
This data release includes time-series data of rock temperature, air temperature, wind speed, and humidity at the Chalk Cliffs debris-flow monitoring site in central Colorado (Latitude: 38.73330, Longitude: -106.18704). The data were collected to help identify the environmental controls on rates of rockfall, which is the primary source of debris-flow material at the site. Data were recorded at 1-minute intervals between November 2011 and August 2015. Data collection was occasionally interrupted during maintenance periods or when there was a problem with the power supply. Two probes measured profiles of rock temperature at depths of 0, 1, 2, 4, 8, 16, 24, 32, and 42 cm below the rock surface. One probe was placed...
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km^2 study area. This data release includes videos of debris-flows and floods captured by high-definition cameras placed at four different locations along the study area at Chalk Cliffs during 2017. Near the Upper Station (Station 1) there are two cameras, one located at the bridge cross section at the channel (Bridge Camera) and another on the opposite side of the basin with a broad view of the channel (Wide-angle Camera). The third camera is located near Station...


map background search result map search result map Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Monitoring environmental controls on debris-flow sediment supply, Chalk Cliffs, Colorado, 2011 to 2015 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Debris-flow video files, Chalk Cliffs, Colorado, USA, 2017 Debris-flow Video Files for Middle Camera (Station 2), Chalk Cliffs, Colorado, USA, 2016 Debris Flow Video Files for Wide Angle Camera (Station 1), Chalk Cliffs, Colorado, USA, 2016 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 Debris Flow Video Files for Bridge Camera (Station 1), Chalk Cliffs, Colorado, USA, 2015 Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Slow-moving landslides and subsiding fan deltas mapped from Sentinel-1 InSAR in the Glacier Bay region, Alaska and British Columbia, 2018-2020 Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Field observations of landslides and related materials following Hurricane Maria, Puerto Rico Monitoring environmental controls on debris-flow sediment supply, Chalk Cliffs, Colorado, 2011 to 2015 Debris-flow video files, Chalk Cliffs, Colorado, USA, 2017 Debris-flow Video Files for Middle Camera (Station 2), Chalk Cliffs, Colorado, USA, 2016 Debris Flow Video Files for Wide Angle Camera (Station 1), Chalk Cliffs, Colorado, USA, 2016 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 Debris Flow Video Files for Bridge Camera (Station 1), Chalk Cliffs, Colorado, USA, 2015 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Field observations of landslides and related materials following Hurricane Maria, Puerto Rico Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Slow-moving landslides and subsiding fan deltas mapped from Sentinel-1 InSAR in the Glacier Bay region, Alaska and British Columbia, 2018-2020