Skip to main content
Advanced Search

Filters: partyWithName: Jeffrey A Coe (X) > Categories: Data (X)

9 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
The effects of climate change have the potential to impact slope stability. Negative impacts are expected to be greatest at high northerly latitudes where degradation of permafrost in rock and soil, debuttressing of slopes as a result of glacial retreat, and changes in ocean ice-cover are likely to increase the susceptibility of slopes to landslides. In the United States, the greatest increases in air temperature and precipitation are expected to occur in Alaska. In order to assess the impact that these environmental changes will have on landslide size (magnitude), mobility, and frequency, inventories of historical landslides are needed. These inventories provide baseline data that can be used to identify changes...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
This data release contains model output from simulations presented in the associated Open-File Report (Barnhart and others, 2021). In this report, we present model results from four simulations (scenarios C-290, NC-290, C-689, NC-689, Table 1) of hypothetical rapid movement of landslides into adjacent fjord water at Barry Arm, Alaska using the D-Claw model (George and Iverson, 2014; Iverson and George, 2014). The basis for the four scenarios is described in Barnhart and others (2021). Table 1. Summary of four considered scenarios including key simulation input parameter values. Simulation input parameters Scenario name and description NC-290 C-290 NC-689 C-689 Symbol Units Description Smaller,...
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...
thumbnail
On September 20, 2017, Hurricane Maria hit the U.S. territory of Puerto Rico as a category 4 storm. Heavy rainfall caused landslides in mountainous regions throughout the territory. This data release presents geospatial data describing the concentration of landslides generated by Hurricane Maria in Puerto Rico. We used post-hurricane satellite and aerial imagery collected between September 26, 2017 and October 8, 2017 to visually estimate the concentration of landslides over nearly the whole territory. This was done by dividing the territory into a grid with 4 square km cells (2 km x 2 km). Each 4 square km grid cell was classified as either containing no landslides, fewer than 25 landslides/ square km or more than...
thumbnail
On May 25th, 2014, a 54.5 Mm3 rock avalanche occurred in the West Salt Creek valley in western Colorado following heavy rainfall on top of snow (Coe and others, 2016a). The data in this project includes boulder density in 20-m x 20-m grid cells for the entire West Salt Creek rock avalanche deposit. The grid cells cover 2,154,800 m2, which accounts for nearly the entire surface of the deposit. We estimated boulder density by counting 1-m or larger diameter boulders of sedimentary rock that are visible in high-resolution Unmanned Aircraft System (UAS) imagery collected for the area in July of 2014 (Coe and others, 2016b). Basalt boulders were excluded from the count because field observations indicated that they generally...
thumbnail
The use of high-resolution remotely sensed imagery can be an effective way to obtain quantitative measurements of rock-avalanche volumes and geometries in remote glaciated areas, both of which are important for an improved understanding of rock-avalanche characteristics and processes. We utilized the availability of high-resolution (~0.5 m) WorldView satellite stereo imagery to derive digital elevation data in a 100 km2 area around the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park and Preserve, Alaska. We used NASA Ames Stereo Pipeline, an open-source software package available from NASA, to produce one pre- and four post-event digital elevation models (DEMs) of the area surrounding the Lamplugh...
thumbnail
Glacial retreat and mountain-permafrost degradation resulting from rising global temperatures have the potential to impact the frequency and magnitude of landslides in glaciated environments. In the Saint Elias Mountains of southeast Alaska, the presence of weak sedimentary and metamorphic rocks and active uplift resulting from the collision of the Yakutat and North American tectonic plates create landslide-prone conditions (Winkler et al., 2000). We used Landsat imagery to create an inventory of large (>0.1 square km) rock avalanches that occurred along the south flank of the Saint Elias Mountains between 1984 and 2019 as a baseline for present and future changes in landslide magnitude and frequency. This data...


    map background search result map search result map Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Pre- and post-event digital elevation models generated from high-resolution stereo satellite imagery of the 2016 Lamplugh rock avalanche in Glacier Bay National Park and Preserve, Alaska Inventory data of rock avalanches in the Saint Elias Mountains of southeast Alaska, derived from Landsat imagery (1984-2019) Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Pre- and post-event digital elevation models generated from high-resolution stereo satellite imagery of the 2016 Lamplugh rock avalanche in Glacier Bay National Park and Preserve, Alaska Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Inventory data of rock avalanches in the Saint Elias Mountains of southeast Alaska, derived from Landsat imagery (1984-2019) Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984-2016: a baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency Map data showing concentration of landslides caused by Hurricane Maria in Puerto Rico Select model results from simulations of hypothetical rapid failures of landslides into Barry Arm, Prince William Sound, Alaska