Skip to main content
Advanced Search

Filters: partyWithName: Dean B Gesch (X)

13 results (48ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Located in the northern tropical Pacific Ocean, Majuro is the capital of the Republic of the Marshall Islands. Majuro Atoll consists of a large, narrow landmass and a set of smaller perimeter islands surrounding a lagoon that is over 100 square miles in size. The waters surrounding the Majuro Atoll land areas are relatively shallow with poorly mapped bathymetry. However, the Pacific Ocean on the exterior of the coral atoll and the lagoon within its interior consist of deep bathymetry with steep slopes. The highest elevation of the Majuro Atoll is estimated at only 3-meters above sea level, which is the island community of Laura located on the western part of the atoll. At the eastern edge of the atoll lies the capital...
Categories: Data; Tags: 3D Elevation Program, 3DEP, American Society of Photogrammetry and Remote Sensing, Base Maps, Bathymetric, All tags...
thumbnail
Low-lying island environments, such as the Majuro Atoll in the Republic of the Marshall Islands, are particularly vulnerable to inundation (coastal flooding) whether the increased water levels are from episodic events (storm surge, wave run-up, king tides) or from chronic conditions (long term sea-level rise). Land elevation is the primary geophysical variable that determines exposure to inundation in coastal settings. Accordingly, coastal elevation data are a critical input for assessments of inundation exposure and vulnerability. Previous research has demonstrated that the quality of data used for elevation-based assessments must be well understood and applied to properly model potential impacts. The vertical...
thumbnail
The Intergovernmental Panel on Climate Change reports that low-lying atolls (ring-shaped islands or island chains made of coral) in the Pacific Ocean are extremely vulnerable to high tide events (“king tides”), storm surge, tsunamis, and sea-level rise. The Republic of the Marshall Islands (RMI) spreads over 29 atolls and has a population of over 50,000 people with homes and communities that may be threatened by these climate change-related events. Policy makers, planners, and others within RMI are faced with decisions about how to prepare for the future and need scientific data and information about the vulnerability of Pacific Islands to potential climate change impacts like sea-level rise. Topographic and bathymetric...
thumbnail
U.S. Geological Survey (USGS) and Virginia Institute of Marine Science (VIMS) scientists conducted field data collection efforts during June 11th - 16th, 2020, using a combination of remote sensing technologies to map riverbank and wetland topography and vegetation at five sites in the Chesapeake Bay Region of Virginia. The five sites are located along the James, Severn, and York Rivers. The work was initiated to evaluate the utility of different remote sensing technologies in mapping river bluff and wetland topography and vegetation for change detection and sediment transport modeling. The USGS team collected Global Navigation Satellite System (GNSS), total station, and ground based lidar (GBL) data while the VIMS...
Tags: Bathymetry, Captain Sinclair's Recreational Area, Carter's Grove, Chesapeake Bay, Chippokes Plantation State Park, All tags...
thumbnail
With an average elevation of just seven feet above sea level, the Republic of the Marshall Islands is acutely vulnerable to inundation from both episodic events such as storm surge and chronic conditions such as sea-level rise. Some projections estimate that future sea-level rise could exceed the average elevation of these islands by 2100. Already, residents are facing extreme high tides and 16 foot swells that flood the islands with saltwater, damaging homes and infrastructure and contaminating the freshwater supply. Land elevation is the primary factor that determines the vulnerability of coastal areas to inundation. This project builds on previous work in which a 1-meter resolution digital elevation model (DEM)...
thumbnail
The Chesapeake Bay Estuary is the largest estuary in the United States and provides habitats for diverse wildlife and aquatic species, protects communities against flooding, reduces pollution to waterways, and supports local economies through commercial and recreational activities. In the Spring of 2018, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project at the USGS Earth Resources Observation and Science (EROS) Center and the Virginia Institute of Marine Science (VIMS) Center for Coastal Resources Management (CCRM) initiated collaborative work. The goal of this collaboration is to evaluate how various remote sensing technologies can be employed to model estuarine...
Tags: Bathymetry, Captain Sinclair's Recreational Area, Carter's Grove, Chesapeake Bay, Chippokes Plantation State Park, All tags...
thumbnail
In recent years, rising sea levels have threatened critical infrastructure and cultural assets at Puʻuhonua o Hōnaunau National Historical Park thus motivating the park to make adaptive decisions in managing these key resources. To support the development of decision support tools for sea level rise preparedness, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for Puʻuhonua o Hōnaunau National Historical Park. This dataset was developed in collaboration with the University of Hawaii- Mānoa Sea Level Center, Department of Interior Pacific Island Climate Adaptation Science Center, and...
The understanding of sea-level rise (SLR) processes has improved significantly over the past 15-20 years. Contributions from ice sheets and ocean dynamics are increasingly well-understood, and global budgets better constrained. In addition to physically-based models, semi-empirical methods, and more recently expert elicitations, are also available to describe potential SLR. In spite of these advances, there is still large uncertainty in the magnitude and timing of SLR over the next century and beyond. How much and how fast sea-level may rise can be a significant determinant of management actions in both natural and built environments. Assessing the potential vulnerability of the coastal zone to SLR requires integrating...
thumbnail
U.S. Geological Survey (USGS) scientists conducted field work efforts during February 15-23, 2017 and April 10-25, 2019 in the mangrove forests of Pohnpei, Federated States of Micronesia (FSM) with logistical assistance from the Micronesia Conservation Trust (MCT) and field assistance from the Conservation Society of Pohnpei and the Pohnpei Department of Forestry. The field team combined the surveying technologies and techniques of Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) surveying, total station surveying, and differential leveling to measure elevations on critical features in the mangrove forests, including the elevations of water level recorders, sediment coring locations, and Surface...
thumbnail
The three-dimensional (3D) form of the Earth’s surface results from both abiotic and biotic forces. Major abiotic forces, such as tectonic uplift, erosion, and climate, exert strong influence over land surface morphology. Biotic forces, including, significantly, humans, also shape the landscape, but often at different temporal and spatial scales and magnitudes than geologic forces. Because the processes shaping the land surface, as expressed in its topography, are ongoing, topographic change is ever present and is a factor that must be broadly considered in studies of natural and built environments. Remote sensing data, especially in the form of derived high-resolution measurements of the topography, have been widely...
thumbnail
U.S. Geological Survey (USGS) and University of Hawaii - Mānoa (UH) scientists conducted field data collection efforts from August 19th - 27th, 2019 at Pu‘uhonua O Hōnaunau National Historical Park on the Big Island of Hawaii. The data collection efforts utilized a combination of remote sensing technologies to map the topography, critical infrastructure, and most importantly, the cultural assets of Pu‘uhonua O Hōnaunau National Historical Park. The USGS and UH team collected Global Navigation Satellite System (GNSS), total station, and ground based lidar (GBL) data, along with utilizing Uncrewed Aerial Systems (UAS) to collect imagery and UAS lidar to map these features. This data release contains shapefiles of...
thumbnail
In 2010, 39 percent of the U.S.population lived near the coast. This population is expected to increase by 8 percent from 2010 to 2020. Coastal regions are also home to species and habitats that provide critical services to humans, such as wetlands that buffer coasts from storms. Therefore, sea-level rise and the associated changes in coastlines challenge both human communities and ecosystems. Understanding which coastal lands will be vulnerable to sea-level rise is critical for policy makers, land-use planners, and coastal residents. Focusing on the coastal region from Virginia to Maine, researchers examined a range of different possible sea-level rise scenarios, combined with information on features of the coastal...
thumbnail
U.S. Geological Survey (USGS) and Virginia Institute of Marine Science (VIMS) scientists conducted field data collection efforts during the week of April 8th - 14th, 2018, using a combination of remote sensing technologies to map riverbank and wetland topography and vegetation at four sites in the Chesapeake Bay Region of Virginia. The four sites are located along the James, Severn, and York Rivers. The work was initiated to evaluate the utility of different remote sensing technologies in mapping river bluff and wetland topography and vegetation for change detection and sediment transport modeling. The USGS team collected Global Navigation Satellite System (GNSS), total station, and ground based lidar (GBL) data...
Tags: Bathymetry, Captain Sinclair's Recreational Area, Carter's Grove, Chesapeake Bay, Chippokes Plantation State Park, All tags...


    map background search result map search result map Evaluating Sea-level Rise Impacts in the Northeastern U.S. Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands One Meter Topobathymetric Digital Elevation Model for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016 Characterizing Inundation Risk for Majuro Atoll Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Pohnpei, Federated States of Micronesia Mangrove Elevation Survey Data Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping - 2018 Field Survey Data Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping - 2020 Field Survey Data Topobathymetric Model of Pu‘uhonua O Hōnaunau National Historical Park, 2011 to 2019 – Field Survey Source and Validation Data Topobathymetric Model of Puʻuhonua o Hōnaunau National Historical Park, 2011 to 2019 Topobathymetric Model of Pu‘uhonua O Hōnaunau National Historical Park, 2011 to 2019 – Field Survey Source and Validation Data Topobathymetric Model of Puʻuhonua o Hōnaunau National Historical Park, 2011 to 2019 Pohnpei, Federated States of Micronesia Mangrove Elevation Survey Data Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping - 2018 Field Survey Data One Meter Topobathymetric Digital Elevation Model for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016 Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping - 2020 Field Survey Data Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands Characterizing Inundation Risk for Majuro Atoll Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping Evaluating Sea-level Rise Impacts in the Northeastern U.S.