Skip to main content
Advanced Search

Filters: partyWithName: Michael D Pace (X) > Types: OGC WFS Layer (X)

7 results (11ms)   

View Results as: JSON ATOM CSV
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
thumbnail
Airborne geophysical surveys were acquired in March 2018 and May 25 through August 7, 2021 using a helicopter-based platform. These surveys were collected along 10,706 line-kilometers (line-km) within selected areas of the Mississippi Alluvial Plain (MAP) and the Chicot Aquifer System in the southeastern United States. The airborne geophysical surveys include electromagnetic, magnetic, and radiometric sensor data collected in rivers and levees throughout the two areas to evaluate groundwater and surface-water interaction, riverine ecosystems, and infrastructure. This data release contains three child items that provide: Minimally processed (raw) data supplied by the airborne contractor (Xcalibur Multiphysics)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: "Geomorphology"], "Hydrology", "Sedimentology", "Stratigraphy", "Water Resources", All tags...
thumbnail
Shallow soil conductivity was mapped in the San Luis Valley, Colorado, using the DualEM421 electromagnetic sensor in March 2020. Data were acquired by towing the DualEM421 sensor on a wheeled cart behind an all-terrain vehicle, with the sensor at a height of 0.457 m above the ground surface. Approximately 62 line-kilometers of data were acquired over an area of nearly 1.5 square kilometers, with 20 m separation between survey lines. Data were manually edited for noise sources (powerlines, pipelines, or other buried structures), and averaged to regular output soundings every 1 m along survey lines. Data were corrected for offset between the recorded GPS location and data locations for each coil pair, but were not...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired September 2021 to January 2022 along 27,204 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP), Mississippi Embayment, and Gulf Coastal Plain. Data were acquired by Xcalibur Multiphysics (Canada), Ltd. with three different airborne sensors: the 30Hz TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m) depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Illinois, All tags...
thumbnail
This dataset consists of 127 wideband and 21 long-period magnetotelluric (MT) stations collected from 2016-2019 across parts of Missouri, Arkansas, Tennessee, Illinois, and Kentucky. The U.S. Geological Survey acquired these data as part of regional investigations into the geologic and tectonic framework of the area and to support mineral resource and geologic hazard investigations. These data have been used to generate a 3D regional conductivity model of the area. Files included in this publication include measured electric- and magnetic-field time series as well as estimated impedance and vertical-magnetic field transfer functions.
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an all-terrain vehicle (ATV), with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square-kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures and averaged to regular output soundings every 5 m along survey lines. The processed data were inverted to recover models of electrical resistivity structure as a function of depth...
This dataset consists of 176 wideband magnetotelluric (MT) stations collected from 2015-2019 across parts of Minnesota, Wisconsin and the Upper Peninsula of Michigan. The U.S. Geological Survey (USGS) acquired these data as part of regional investigations into the geologic and tectonic framework of the area and to support mineral resource investigations. These data have been used to generate a 3D regional conductivity model of the area. Files included in this publication include measured electric- and magnetic-field time series as well as estimated impedance and vertical-magnetic field transfer functions.


    map background search result map search result map Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Ground-based electromagnetic survey, Alamosa, Colorado, March 2020 Magnetotelluric data from Missouri, Arkansas, Tennessee, Illinois, and Kentucky, 2016-2019 Magnetotelluric data from Minnesota, Wisconsin, and Upper Michigan, 2015-2019 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Airborne electromagnetic, magnetic, and radiometric surveys of the Mississippi Alluvial Plain and Chicot Aquifer System, March 2018 and May - August 2021 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022 Ground-based electromagnetic survey, Alamosa, Colorado, March 2020 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Magnetotelluric data from Missouri, Arkansas, Tennessee, Illinois, and Kentucky, 2016-2019 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Magnetotelluric data from Minnesota, Wisconsin, and Upper Michigan, 2015-2019 Airborne electromagnetic, magnetic, and radiometric surveys of the Mississippi Alluvial Plain and Chicot Aquifer System, March 2018 and May - August 2021 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022