Skip to main content
Advanced Search

Filters: partyWithName: GS ScienceBase (X) > Types: OGC WFS Layer (X) > Extensions: Shapefile (X)

22 results (98ms)   

View Results as: JSON ATOM CSV
thumbnail
The hydrologic response units (HRUs) available here were used in the Precipitation Runoff Modeling System (PRMS) of southern Guam documented by Rosa and Hay (2017). A Geographic Information System (GIS) file for the HRUs is provided as a shapefile with attributes ParentHRU, Region, and RegionHRU identifying the numbering convention used in the PRMS_2016 southern Guam model parameter files and Rosa and Hay (2017) report. Hydrologic response units (HRUs) were delineating using the processing steps outlined in Viger and Leavesley (2007) and a 5-meter digital elevation model (DEM) derived by Johnson (2012) using the Joint Airborne LIDAR Bathymetry Technical Center of Expertise topobathy data (National Oceanic and Atmospheric...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
These polygon features represent digitization of the glacier margins for the 37 named glaciers of Glacier National Park (GNP) and two glaciers on U.S. Forest Service’s Flathead National Forest land, derived from 2015 satellite imagery. The polygons represent only the main body portion of each glacier as it appeared in 2015 satellite imagery. Disconnected patches are not included as this dataset represents only the main body features of the named glaciers in GNP and environs. Polygons were digitized from WorldView imagery acquired on the following source dates: 20150822, 20150912, 20150915, 20150925 (World View 01 satellite). Initial digitization was completed by Melissa Brett, PSU graduate student. This set of polygons...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
The stream segments available here were used in the Precipitation Runoff Modeling System (PRMS) of southern Guam documented by Rosa and Hay (2017). A Geographic Information System (GIS) file for the stream segments is provided as a shapefile with attributes ParentSeg, Region, and RegionSeg identifying the numbering convention used in the PRMS_2016 southern Guam model parameter files and Rosa and Hay (in press) report. Stream segments were derived using the processing steps outlined in Viger and Leavesley (2007) describing drainage network processing and a 5-meter digital elevation map (DEM) derived by Johnson (2012) using the Joint Airborne LIDAR Bathymetry Technical Center of Expertise topobathy data (National...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
The Louisiana State Legislature created Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed persuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Big Island Mining (AT-03) project for 2016. This data set is used as a basemap for habitat classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their project boundary....
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
These polygon features represent digitization of the glacier margins for the 37 named glaciers of Glacier National Park (GNP) and two glaciers on U.S. Forest Service’s Flathead National Forest land, derived from 2005 NAIP imagery. The polygons represent only the main body portion of each glacier as it appeared in 2005 NAIP imagery. Disconnected patches are not included as this dataset represents only the main body features of the named glaciers in GNP and environs. Polygons were digitized from NAIP imagery acquired on the following source dates: 20050731, 20050826, 20050827. Initial digitization was completed by Kristina A Dick, Portland State University graduate student. This set of polygons represents revisions...
thumbnail
The success of Gulf Coast restoration efforts hinge on partners sharing a common vision for conservation framed by explicit biological objectives for specific conservation targets. However, specific and explicit biological objectives that quantify what it means to actually share a common vision remain undefined. Therefore, this project's goal is to develop explicit biological objectives for a common suite of conservation targets representative of sustainable Gulf habitats across the four Gulf Landscape Conservation Cooperatives (LCCs)(i.e., Gulf Coast Prairie, Gulf Coastal Plains & Ozarks, Peninsular Florida, and South Atlantic) and, for a subset of those species, to use Bayesian Network models to link these biological...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) is in the process of creating high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:24,000-scale color infrared aerial photos collected in 2000. The photos are being interpreted using a 1-hectare 10% minimum vegetation cover to delineate land cover/land use, percent vegetation cover, tree height, and hydrology regime. The geographic extent of the UMRS is the Mississippi River from Cairo, IL to Minneapolis, MN and the Illinois River from its confluence with the Mississippi near Grafton, IL to Lake Michigan.


map background search result map search result map 2005_Glacier margins derived from 2005 NAIP imagery for the named glaciers of Glacier National Park, MT and environs 2015_Glacier margins derived from 2015 satellite imagery for the named glaciers of Glacier National Park, MT and environs Biological planning units and aquatic extensions for the Gulf Coast Stream Segments for the southern Guam watershed model, PRMS_2016 Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Big Island Mining (AT-03): 2016 habitat classification 1989 and 2000 UMRS Pool 13 Land Cover Land Use data aligned to 2010 imagery Forest Canopy Gaps Identified by Lidar for the Alton Reach of the Illinois River from the Confluence of the Mississippi River to Kampsville, IL Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 9 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 13 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 21 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 24 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 26 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Alton Reach of the Illinois River Broken Forest Canopy Identified by Lidar for the Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 9 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 21 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Big Island Mining (AT-03): 2016 habitat classification Stream Segments for the southern Guam watershed model, PRMS_2016 Forest Canopy Gaps Identified by Lidar for Navigational Pool 21 of the Mississippi River Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Broken Forest Canopy Identified by Lidar for the Navigational Pool 21 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 8 of the Mississippi River Forest Canopy Gaps Identified by Lidar for the Alton Reach of the Illinois River from the Confluence of the Mississippi River to Kampsville, IL Broken Forest Canopy Identified by Lidar for the Alton Reach of the Illinois River Forest Canopy Gaps Identified by Lidar for Navigational Pool 24 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 9 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 9 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River 1989 and 2000 UMRS Pool 13 Land Cover Land Use data aligned to 2010 imagery 2015_Glacier margins derived from 2015 satellite imagery for the named glaciers of Glacier National Park, MT and environs 2005_Glacier margins derived from 2005 NAIP imagery for the named glaciers of Glacier National Park, MT and environs Biological planning units and aquatic extensions for the Gulf Coast