Skip to main content
Advanced Search

Filters: partyWithName: Burke J Minsley (X) > partyWithName: Energy and Minerals (X)

14 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Shallow soil conductivity was mapped in the San Luis Valley, Colorado, using the DualEM421 electromagnetic sensor in March 2020. Data were acquired by towing the DualEM421 sensor on a wheeled cart behind an all-terrain vehicle, with the sensor at a height of 0.457 m above the ground surface. Approximately 62 line-kilometers of data were acquired over an area of nearly 1.5 square kilometers, with 20 m separation between survey lines. Data were manually edited for noise sources (powerlines, pipelines, or other buried structures), and averaged to regular output soundings every 1 m along survey lines. Data were corrected for offset between the recorded GPS location and data locations for each coil pair, but were not...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Surface electrical resistivity tomography (ERT), time-domain electromagnetics (TEM), nuclear magnetic resonance (NMR), magnetics, and gravity data were acquired in 2016, 2017 and 2018 in the greater East River Watershed near Crested Butte Colorado with a focused effort in Redwell Basin. Five ERT profiles were acquired within Redwell Basin and Brush Creek to map geologic structure at depths up to 40 meters, depending on the subsurface resistivity, using the Advanced Geosciences, Inc. SuperSting R8 resistivity meter. Approximately ten kilometers of total field magnetics data were acquired with a Geometrics G-858 cesium vapor magnetometer that detects changes in deep (tens of meters to kilometers) geologic structure...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Brush Creek, Colorado, Crested Butte, East River, Environmental Health, All tags...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired September 2021 to January 2022 along 27,204 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP), Mississippi Embayment, and Gulf Coastal Plain. Data were acquired by Xcalibur Multiphysics (Canada), Ltd. with three different airborne sensors: the 30Hz TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m) depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Illinois, All tags...
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110 - 222 m in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf course...
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in 2019 and 2020 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. In September 2019, electrical resistivity tomography (ERT) and downhole nuclear magnetic resonance (NMR) data were used to quantify permafrost characteristics across the shorelines of Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an all-terrain vehicle (ATV), with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square-kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures and averaged to regular output soundings every 5 m along survey lines. The processed data were inverted to recover models of electrical resistivity structure as a function of depth...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...


    map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Surface electrical resistivity tomography, magnetic, and gravity surveys in Redwell Basin and the greater East River watershed near Crested Butte, Colorado, 2017 Ground-based electromagnetic survey, Alamosa, Colorado, March 2020 Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022 Ground-based electromagnetic survey, Alamosa, Colorado, March 2020 Ground-based electromagnetic survey, Shellmound, Mississippi, October 2018 Surface electrical resistivity tomography, magnetic, and gravity surveys in Redwell Basin and the greater East River watershed near Crested Butte, Colorado, 2017 Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2015 Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022