Skip to main content
Advanced Search

Filters: partyWithName: Heidi L Kane (X)

30 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains a comma-delimited ascii file of two same-day, discrete discharge measurements made at sites along selected reaches of Waipāhoehoe Stream, Hawai'i on July 16, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...
thumbnail
This data release contains a comma-delimited ascii file of nine discrete discharge measurements made at sites along selected reaches of Palauhulu Stream, Maui, Hawai'i on October 19, 2021 and November 22, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of 15 discrete discharge measurements made at sites along selected reaches of He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i, on March 23, 2022. These discrete discharge measurements form what is commonly referred to as a "seepage run." The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into or out of the stream channel between measurement sites, provided that the measurements were made during stable, nonchanging flow conditions...
thumbnail
This data release contains a comma-delimited ascii file of three same-day, discrete discharge measurements made at sites along selected reaches of Kaunakakai Gulch, Moloka'i, Hawai'i on September 10, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of eight same-day, discrete discharge measurements made at sites along selected reaches of Kawainui Stream, O'ahu, Hawai'i on September 24, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
thumbnail
This data release contains a comma-delimited ascii file of four same-day, discrete discharge measurements made at sites along selected reaches of Honoulimalo'o Stream, Moloka'i, Hawai'i on December 1, 2020. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of 16 discrete discharge measurements made at sites along selected reaches of He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i, on August 9, 2022. These discrete discharge measurements form what is commonly referred to as a "seepage run." The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions that are generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during...
thumbnail
The shapefiles in this dataset represent the spatial distribution of mean annual water-budget components, in inches, for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi, for a set of recent and future climate conditions, and 2020 land cover. The four main climate scenarios used in the water-budget analyses include a reference climate scenario representative of recent conditions during 1978–2007, hereinafter the 1978–2007 scenario, and three downscaled future-climate projections that span a range of future-climate conditions for each island. The three future-climate projections include (1) a mid-century scenario using projected rainfall conditions representative of phase 5 of the Coupled Model Intercomparison...
thumbnail
This data release contains a comma-delimited ascii file of three same-day, discrete discharge measurements made at sites along selected reaches of Honomū Stream, Hawai'i on August 11, 2020. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...
thumbnail
This data release contains a comma-delimited ascii file of four same-day, discrete discharge measurements made at sites along selected reaches of Pāpio Gulch, Moloka'i, Hawai'i on January 28, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
The Water-budget Accounting for Tropical Regions Model (WATRMod) code was used for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi to estimate the spatial distribution of groundwater recharge, soil moisture, evapotranspiration, and climatic water deficit for a set of water-budget scenarios. The scenarios included historical and future drought conditions, and a land-cover condition where shrubland and forest within the cloud zone were converted to grassland. For the historical drought condition, island-wide mean annual recharge estimates range from a decrease of 30 percent (239 million gallons per day [Mgal/d]) for Kauaʻi to a decrease of 39 percent (2,706 Mgal/d) for the Island of Hawaiʻi, relative to the...
Categories: Publication; Types: Citation
thumbnail
This data release contains a comma-delimited ascii file of three same-day, discrete discharge measurements made at sites along selected reaches of Lanikele Gulch, Maui, Hawai'i on October 20, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
thumbnail
This data release contains a comma-delimited ascii file of eight same-day, discrete discharge measurements made at sites along selected reaches of Kamaʻeʻe Stream, Hawai'i on June 13, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...
thumbnail
This data release contains a comma-delimited ascii file of three same-day, discrete discharge measurements made at sites along selected reaches of Alelele Stream, Maui, Hawai'i on October 9, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
thumbnail
This data release contains a comma-delimited ascii file of six same-day, discrete discharge measurements made at sites along selected reaches of North Fork Kaukonahua Stream, O'ahu, Hawai'i on August 31, 2022. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable,...
thumbnail
This data release contains a comma-delimited ascii file of 25 discrete discharge measurements made at sites along selected reaches of Waikapū Stream, Maui, Hawai'i on October 16, 2018 and May 7, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
Demand for freshwater in the State of Hawaiʻi is expected to increase by roughly 13 percent from 2020 to 2035. Groundwater availability in Hawaiʻi is affected by a number of factors, including land cover, rainfall, runoff, evapotranspiration, and climate change. To evaluate the availability of fresh groundwater under projected future-climate conditions, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was used to estimate the spatial distribution of groundwater recharge for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for recent climate conditions and three future-climate scenarios. Climate conditions from 1978 to 2007 were used as the reference...
Categories: Publication; Types: Citation
thumbnail
This data release contains a comma-delimited ascii file of twelve same-day, discrete discharge measurements made at sites along selected reaches of 'Āwini Puali Gulch and Waikama Gulch, Hawai'i on October 28, 2021. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during...
thumbnail
This data release contains a comma-delimited ascii file of four same-day, discrete discharge measurements made at sites along selected reaches of Honomuni Gulch, Moloka'i, Hawai'i on November 28, 2018. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging...
thumbnail
This data release contains a comma-delimited ascii file of four same-day, discrete discharge measurements made at sites along selected reaches of Ka'ula Gulch, Hawai'i on November 4, 2019. These discrete discharge measurements form what is commonly referred to as a “seepage run.” The intent of the seepage run is to quantify the spatial distribution of streamflow along the reach during fair-weather, low-flow conditions, generally characterized by negligible direct runoff within the reach. The measurements can be used to characterize the net seepage of water into (water gain) or out of (water loss) the stream channel between measurement sites provided that the measurements were made during stable, nonchanging flow...


map background search result map search result map Seepage-run discharge measurements, August 11, 2020, Honomū Stream, Hawai'i Mean annual water-budget components for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for a set of recent and future climate conditions, and 2020 land cover Seepage-run discharge measurements, June 13, 2019, Kamaʻeʻe Stream, Hawai'i Seepage-run discharge measurements, November 4, 2019, Ka'ula Gulch, Hawai'i Seepage-run discharge measurements, October 28, 2021, Waikama Gulch, Hawai'i Seepage-run discharge measurements, July 16, 2019, Waipāhoehoe Stream, Hawai'i Seepage-run discharge measurements, October 9, 2019, Alelele Stream, Maui, Hawai'i Seepage-run discharge measurements, October 20, 2021, Lanikele Gulch, Maui, Hawai'i Seepage-run discharge measurements, October 19, 2021 and November 22, 2021, Palauhulu Stream, Maui, Hawai'i Seepage-run discharge measurements, October 16, 2018 and May 7, 2019, Waikapū Stream, Maui, Hawai'i Seepage-run discharge measurements, November 28, 2018, Honomuni Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, December 1, 2020, Honoulimalo'o Stream, Moloka'i, Hawai'i Seepage-run discharge measurements, September 10, 2021, Kaunakakai Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, January 28, 2021, Pāpio Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, September 24, 2021, Kawainui Stream, O'ahu, Hawai'i Seepage-run discharge measurements, August 31, 2022, North Fork Kaukonahua Stream, O'ahu, Hawai'i Seepage-run discharge measurements, March 23, 2022, He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i Seepage-run discharge measurements, August 9, 2022, He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i Seepage-run discharge measurements, August 9, 2022, He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i Seepage-run discharge measurements, March 23, 2022, He'eia Stream and 'Ioleka'a Stream, O'ahu, Hawai'i Seepage-run discharge measurements, August 11, 2020, Honomū Stream, Hawai'i Seepage-run discharge measurements, June 13, 2019, Kamaʻeʻe Stream, Hawai'i Seepage-run discharge measurements, November 4, 2019, Ka'ula Gulch, Hawai'i Seepage-run discharge measurements, October 28, 2021, Waikama Gulch, Hawai'i Seepage-run discharge measurements, July 16, 2019, Waipāhoehoe Stream, Hawai'i Seepage-run discharge measurements, October 9, 2019, Alelele Stream, Maui, Hawai'i Seepage-run discharge measurements, October 20, 2021, Lanikele Gulch, Maui, Hawai'i Seepage-run discharge measurements, October 19, 2021 and November 22, 2021, Palauhulu Stream, Maui, Hawai'i Seepage-run discharge measurements, October 16, 2018 and May 7, 2019, Waikapū Stream, Maui, Hawai'i Seepage-run discharge measurements, November 28, 2018, Honomuni Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, December 1, 2020, Honoulimalo'o Stream, Moloka'i, Hawai'i Seepage-run discharge measurements, September 10, 2021, Kaunakakai Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, January 28, 2021, Pāpio Gulch, Moloka'i, Hawai'i Seepage-run discharge measurements, September 24, 2021, Kawainui Stream, O'ahu, Hawai'i Seepage-run discharge measurements, August 31, 2022, North Fork Kaukonahua Stream, O'ahu, Hawai'i Mean annual water-budget components for Kauaʻi, Oʻahu, Molokaʻi, Lānaʻi, Maui, and the Island of Hawaiʻi for a set of recent and future climate conditions, and 2020 land cover