Skip to main content
Advanced Search

Filters: partyWithName: Baron, Jill S (X) > Types: Journal Citation (X) > Types: Citation (X)

12 results (27ms)   

View Results as: JSON ATOM CSV
thumbnail
Dated sediment cores from five alpine lakes (>3200 m asl) in Rocky Mountain National Park (Colorado Front Range, USA) record near-synchronous stratigraphic changes that are believed to reflect ecological and biogeochemical responses to enhanced nitrogen deposition from anthropogenic sources. Changes in sediment proxies include progressive increases in the frequencies of mesotrophic planktonic diatom taxa and diatom concentrations, coupled with depletions of sediment ?15N and C : N values. These trends are especially pronounced since approximately 1950. The most conspicuous diatoms to expand in recent decades are Asterionella formosa and Fragilaria crotonensis. Down-core species changes are corroborated by a year-long...
Categories: Publication; Types: Citation, Journal Citation; Tags: Geobiology
Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on fresh-water biota, and eutrophication of coastal marine waters. Elevated nitrate (NO- 3) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient...
Twenty-two high-elevation lakes (> 3000 m) in Rocky Mountain National Park and Indian Peaks Wilderness Area, Colorado, were surveyed during summer 1998 to explore relationships among benthic invertebrates, water chemistry (particularly nitrate concentrations), and other environmental variables. Water samples were collected from the deepest portion of each lake and analyzed for ions and other water chemistry parameters. Benthic invertebrates were collected from the littoral zone using both a sweep net and Hess sampler. Physical and geographical measurements were derived from maps. Relationships among benthic invertebrate assemblages and environmental variables were examined using canonical correspondence analysis,...
Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program Published in Park Science,...
Categories: Publication; Types: Citation, Journal Citation; Tags: Park Science
Using an estimated background nitrogen (N) deposition value of 0.5 kg N-ha-^yr"1 in 1900, and a 19-year record of measured values from Loch Vale (Colorado, USA; NADP site CO98), I reconstructedan N-deposition history using exponential equations thatcorrelatedwellwithEPA-reportedNO*emissionsfromColoradoandfromthesumof emissions of 11 western states. The mean wet N-deposition values for the period 1950-1964 was -1.5 kg Nha'^yr"1, corresponding to the reported time of alteration of diatom assemblages attributed to N deposition in alpine lakes in Rocky Mountain National Park (USA). This value becomes the critical load defining the threshold for ecological change from eutrophication. Thus if an N-deposition threshold...
In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial communities are significantly altered by N deposition. Greater plant productivity is counterbalanced by biotic community changes and deleterious effects on sensitive organisms (lichens and phytoplankton) that respond to low inputs of N (3 to 8 kilograms N per hectare per year). Streamwater nitrate concentrations are elevated in high-elevation catchments...
Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented. We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N�ha?1�yr?1) or low (<2 kg N�ha?1�yr?1) levels of atmospheric N deposition. High-deposition lakes had higher NO3-N and total...
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system...
thumbnail
We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain...
thumbnail
We asked whether 3?5 kg N y?1 atmospheric N deposition was sufficient to have influenced natural, otherwise undisturbed, terrestrial and aquatic ecosystems of the Colorado Front Range by comparing ecosystem processes and properties east and west of the Continental Divide. The eastern side receives elevated N deposition from urban, agricultural, and industrial sources, compared with 1?2 kg N y?1 on the western side. Foliage of east side old-growth Englemann spruce forests have significantly lower C:N and lignin:N ratios and greater N:Mg and N:P ratios. Soil % N is higher, and C:N ratios lower in the east side stands, and potential net N mineralization rates are greater. Lake NO3 concentrations are significantly higher...
High-altitude watersheds in the Front Range of Colorado show symptoms of advanced stages of nitrogen excess, despite having less nitrogen in atmospheric deposition than other regions where watersheds retain nitrogen. In two alpine/subalpine subbasins of the Loch Vale watershed, atmospheric deposition of NO3? plus NH4+ was 3.2?5.5 kg N ha?1, and watershed export was 1.8?3.9 kg N ha?1 for water years 1992?1997. Annual N export increased in years with greater input of N, but most of the additional N was retained in the watershed, indicating that parts of the ecosystem are nitrogen-limited. Dissolved inorganic nitrogen (DIN) concentrations were greatest in subsurface water of talus landscapes, where mineralization and...
thumbnail
Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ~60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60? excursion in the hydrogen isotope composition of algal-derived palmitic acid,...


    map background search result map search result map Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition Ecosystem Responses to Nitrogen Deposition in the Colorado Front Range The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, U.S.A. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, U.S.A. Ecosystem Responses to Nitrogen Deposition in the Colorado Front Range