Skip to main content
Advanced Search

Filters: partyWithName: Brian J. Harvey (X)

5 results (50ms)   

View Results as: JSON ATOM CSV
Abstract (from SpringerOpen): Wildfires in the Pacific Northwest (Washington, Oregon, Idaho, and western Montana, USA) have been immense in recent years, capturing the attention of resource managers, fire scientists, and the general public. This paper synthesizes understanding of the potential effects of changing climate and fire regimes on Pacific Northwest forests, including effects on disturbance and stress interactions, forest structure and composition, and post-fire ecological processes. We frame this information in a risk assessment context, and conclude with management implications and future research needs. Large and severe fires in the Pacific Northwest are associated with warm and dry conditions, and such...
thumbnail
Data accompanying the manuscript 'Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests' by Laughlin, Rangel-Parra, Morris, Donato, Halofsky and Harvey published in Forest Ecology and Management. Data include field measurements of post-fire seedling abundance and additional information about the forest stands where data were collected. See the main text of the manuscript for complete descriptions of how data were collected, and greater specifics on values and classifications.
This fact sheet was prepared by Jessica Halofsky, David Peterson and Brian Harvey, University of Washington, School of Environmental and Forest Sciences. Editorial assistance from Patti Loesche and Darcy Widmayer. Funding for this work provided by the U.S. Department of the Interior, Northwest Climate Adaptation Science Center. This fact sheets goes with the following synthesis paper: https://doi.org/10.1186/s42408-019-0062-8.
Tree regeneration is a critical mechanism of forest resilience to stand-replacing wildfire (i.e., where fire results in >90 % tree mortality), and post-fire regeneration is a concern worldwide as the climate becomes warmer. Although post-fire tree regeneration has been relatively well-studied in fire-prone forests across western North America, it is less understood in fire regimes characterized by large patches of stand-replacing fire at long intervals, such as the nominally infrequent, high-severity fire regimes of the western Cascades of Washington and northern Oregon, USA (northwestern Cascadia) where some of world’s highest-biomass forests reside. Recent wildfire activity (2015–2020) in northwestern Cascadia...
Categories: Publication; Types: Citation
thumbnail
Data accompanying the manuscript 'Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests' by Laughlin, Rangel-Parra, Morris, Donato, Halofsky and Harvey published in Forest Ecology and Management. Data include field measurements of post-fire seedling abundance and additional information about the forest stands where data were collected. See the main text of the manuscript for complete descriptions of how data were collected, and greater specifics on values and classifications.


    map background search result map search result map Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests Science Data Catalog submission - USGS:c32c2d90-316f-4086-8fa1-c1e5b226db4e Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests Science Data Catalog submission - USGS:c32c2d90-316f-4086-8fa1-c1e5b226db4e