Skip to main content
Advanced Search

Filters: partyWithName: California State Coastal Conservancy (X) > partyWithName: California Landscape Conservation Cooperative (X)

27 results (10ms)   

Filters
Date Range
Extensions
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Environmental Change Network: Current and Future Zonation PrioritizationZonation is a spatial conservation planning software tool that can take into account multiple species to create a hierarchical prioritization of the landscape. This is in contrast to other spatial conservation planning tools which may require predefined conservation targets or areas. Here, we used 199 California landbirds along with Zonation’s “core-area” algorithm to prioritize the California landscape. Species were weighted according to the California Bird Species of Special Concern criteria and probability of occurrence was discounted by distribution model and climate model uncertainty surfaces.The dataset provides priority areas for “current”...
2 matrices of existing climate change tools, the applicability of relevant tools for use in Southern California coastal wetlands, with information to help understand, choose, and use them, with guidance and sample outputs to help users incorporate them into their work. Will include updated information on the newest models. Two types of models: flood inundation and marsh accretion and habitat response. Audience: WRP Partner Agencies and stakeholders, other resource managers throughout Southern California, CA LCC and Partners.
An online decision support tool for managers, planners, conservation practitioners and scientists.The models generating these maps are the first to take into account the ability of marshes to accrete, or keep up with, rising sea levels, in the San Francisco Bay Estuary.PRBO has generated a series of scenarios to provide a range of projections to address the uncertainty in future rates of sea-level rise and suspended sediment availability.Our maps cover the entire Estuary allowing for analyses at multiple spatial scales.This tool displays maps created at a high spatial resolution using the best available elevation data. The website will be continually updated as new data becomes availableThe tool is the first to...
List of coastal wetland archetypes with additional information on hydrology and related functions and other issues that may affect management decisions Audience: WRP Partner Agencies and stakeholders, and other resource managers throughout Southern California.
Conservation priority maps based on combined bird species current and projected abundance and distribution, updated with new model with improved inputs.Point Blue Conservation Science is currently assessing the effects of sea-level rise (SLR) and salinity changes on San Francisco Bay tidal marsh ecosystems. Tidal marshes are naturally resilient to SLR, in that they can build up elevation through the capture of suspended sediment and deposition of organic material (vegetation). Thus, a “bathtub” model approach is not appropriate for assessing impacts to this dynamic habitat. Rather, dynamic accretion potential can be modeled annually based on tidal inundation, sediment availability, and the rate of organic accumulation...
These maps display the magnitude of projected future climate change in relation to the interannual variability in late 20th century CA climate. The maps show the standardized Euclidean distance between the late 20th century climate at each pixel and the future climate at each pixel. The standardization puts all of the climate variables included on the same scale and down weights changes in future climate which have had large year to year variation historically. Warmer colors indicate greater climate change and cooler colors indicate less extreme climate change.
Bird community turnover for current and future climate (GFDL) based on maxent models for 198 land bird species.
Priority areas for conservation of tidal marsh birds given current and future environmental conditions. Maps were created using Zonation, a spatial conservation planning software tool that can take into account multiple species and scenarios to create a hierarchical prioritization of the landscape.The current (2010) and future (2030-2110) prioritization is based upon distribution and abundance models for five tidal marsh bird species which utilized avian observation data (2000 - 2009), a marsh accretion model, and physical variables (e.g. salinity, distance to nearest channel, slope, etc). Values represent the rank in which pixels were removed from the landscape using Zonation Conservation Planning software with...
Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models...
Marsh accretion was modeled by ESA PWA using the Marsh-98 model, described here. The model assumes that rates of marsh plain elevation change depend on the availability of suspended sediment and organic material, water depth, and duration of inundation periods. If enough suspended sediment is available, then tidal marsh elevations can keep pace with increased inundation. Model outputs were linearly interpolated in 10-cm increments for starting elevations ranging from -3.7 to 1.7 m (relative to mean higher high water, or MHHW), and applied to a composite 5-m elevation grid (see below) for SF Bay. Results for each possible combination of projected sea level rise, sediment and organic material availability, and target...
This business plan provides the rationale for developing an Environmental Change Network for the California Landscape Conservation Cooperative. This plan will illustrate important potential uses of the network and its data and show how these uses will increase the efficiency and efficacy of adaptation planning and implementation efforts. We will demonstrate how the value of the network will be greater if implemented sooner. We also show how the proposed network will integrate with larger scale efforts currently ongoing at the national level and how it can also inform smaller scale efforts at local levels. The specific objectives of this business plan are to:• Provide a rational for the further development and implementation...
Full Title: Environmental Change Network: Current and Projected VegetationThe current vegetation layer is derived from the vegetation map developed as part of the California Gap Analysis project. The derivation takes the California Wildlife Habitat Relationships (CWHR) habitat classification provided in the California Gap Analysis layer, generalizes the classes to a set of broader habitat types, and rasterizes it at 800 meter resolution.The future vegetation layers for both the GFDL and CCSM GCM models are derived using a random forest model of the vegetation classification. The original CWHR classification has been generalized to 12 classes for ease in modeling. Inputs to the model include eight bioclimatic variables...
Guidance for incorporating climate change into conservation and restoration strategies was provided in two Climate-Smart Actions for Natural Resource Managers workshops hosted by the Bay Area Ecosystem Climate Change Consortium (BAECCC, baeccc.org) and sponsored by the Gordon and Betty Moore Foundation, the California Landscape Conservation Cooperative, California Coastal Conservancy, and The Nature Conservancy on November 29, 2012 and September 24, 2013. Materials from both of these workshops are presented in this webpage, presented on the CA LCC’s Climate Commons.
This website provides information on the project’s effort to establish a network of environmental monitoring stations within the boundaries of the California LCC. Users of this web portal can view predicted distributional changes in landbird, habitat, and climate under future climate conditions and find out general information on the progress and evolution of the network.
This report presents the approach, methods, conclusions, and recommendations of the San Francisco Bay Area Upland Habitat Goals Project, a five-year science-based study to identify the most essential lands needed to sustain the biodiversity of the San Francisco Bay Area.The project identified the types, amount, and distribution of habitats – the Conservation Lands Network – and the ecological processes needed to sustain healthy and diverse populations of plants, fish, and wildlife in the nine county Bay Area. The Conservation Lands Network is a mosaic of existing protected lands, additional lands to support irreplaceable rare and endemic species, and vast tracts of intact common vegetation types. The network design...
Densities for five key tidal marsh-dependent bird species were modeled using boosted regression trees (Elith et al. 2008). The models are able to fit non-linear functions between environmental variables and the presence/absence or density of a species. Map values represent the probability of occurrence of a species or the density (birds/ha). Higher values in a map indicate a higher likelihood that a species will be present at a site. Bird species modeled: Common yellowthroat, black rail, clapper rail, marsh wren, song sparrow. Model outputs: Probably of occurrence, density (birds per hectare)
This project developed a foundation for monitoring environmental change by identifying where and what to monitor in order to evaluate climate-change impacts. Phase 1 focused on landbirds, however a framework will be developed that recommends standardized monitoring for other taxa and environmental attributes. Phase II Deliverables produced as part of this proposed work include a Business Plan that 1) refines site selection by developing a decision model in combination with analyses of sites (or clusters of sites) arrayed by climate space, 2) works with the LCC science committee, Joint Ventures, and other partners to choose a manageable number of core monitoring variables, 3) develops and/or adopting existing protocols...
The development of sophisticated species distribution modeling techniques provides an opportunity to examine the potential effects of climate change on bird communities. Using these modeling approaches, we are relating bird data to environmental layers to generate robust predictions of current (1971–2000) and projected future species occurrence. Future bird distributions are based on regional climate model projections for the periods 2038–2070 (IPCC Scenario A2). Bird species distributions were created using the Maxent modeling technique: Maxent (Phillips et al. 2006), which is able to model non-linear responses to environmental variables. Map values represent the predicted habitat suitability; the higher the values,...