Skip to main content
Advanced Search

Filters: partyWithName: Drake, Bert G (X) > Extensions: Citation (X) > Types: Journal Citation (X) > partyWithName: Dijkstra, Paul (X)

2 results (8ms)   

View Results as: JSON ATOM CSV
Elevated carbon dioxide (CO2) caused greater accumulation of carbon (C) and nutrients in both vegetation and O horizons over a 5-yr sampling period in a scrub oak ecosystem in Florida. Elevated CO2 had no effect on any measured soil property except extractable phosphorus (P), which was lower with elevated CO2 after five years. Anion and cation exchange membranes showed lower available nitrogen (N) and zinc (Zn) with elevated CO2. Soils in both elevated and ambient CO2 showed decreases in total C, N, sulfur (S), and cation exchange capacity, and increases in base saturation, exchangeable Ca2+, and Mg2+ over the 5-yr sampling period. We hypothesize that these soil changes were a delayed response to prescribed fire,...
Experimentally increasing atmospheric CO2 often stimulates plant growth and ecosystem carbon (C) uptake. Biogeochemical theory predicts that these initial responses will immobilize nitrogen (N) in plant biomass and soil organic matter, causing N availability to plants to decline, and reducing the long-term CO2-stimulation of C storage in N limited ecosystems. While many experiments have examined changes in N cycling in response to elevated CO2, empirical tests of this theoretical prediction are scarce. During seven years of postfire recovery in a scrub oak ecosystem, elevated CO2 initially increased plant N accumulation and plant uptake of tracer 15N, peaking after four years of CO2 enrichment. Between years four...