Skip to main content
Advanced Search

Filters: partyWithName: Hongli Feng (X) > Extensions: Citation (X)

5 results (9ms)   

View Results as: JSON ATOM CSV
Abstract (from IOP Science): Global agriculture is challenged to increase soil carbon sequestration and reduce greenhouse gas emissions while providing products for an increasing population. Growing crop production could be achieved through higher yield per hectare (i.e. intensive farming) or more hectares (extensive farming), which however, have different ecological and environmental consequences. Multiple lines of evidence indicate that expanding cropland for additional production may lead to loss of vegetation and soil carbon, and threaten the survival of wildlife. New concerns about the impacts of extensive farming have been raised for the US Corn Belt, one of the world's most productive regions, as cropland...
This study investigates optimal grassland easement acquisition strategies with a focus on the roles of environmental benefit additionality and spatial spillover effect of grassland conversion. Numerical analysis shows that the optimal solution under a targeting strategy that does not consider any spatial spillover effect may secure less environmental benefit additionality than does a heuristic algorithm that considers spatial spillover. Moreover, heuristic algorithms that consider either conversion probability or spatial spillover can generally achieve more than 97% of environmental benefit additionality obtained under the optimal solution of a targeting strategy that considers both additionality and spatial spillover.
Categories: Publication; Types: Citation
Abstract: (From: Wiley Online Library) Relative agricultural productivity shocks emerging from climate change will alter regional cropland use. Land allocations are sensitive to crop profits that in turn depend on yield effects induced by changes in climate and technology. We develop and apply an integrated framework to assess the impact of climate change on agricultural productivity and land use for the U.S. Northern Great Plains. Crop‐specific yield‐weather models reveal crop comparative advantage due to differential yield impacts of weather across the region's major crops, i.e., alfalfa, wheat, soybeans and maize. We define crop profits as a function of the weather‐driven yields, which are then used to model...