Skip to main content
Advanced Search

Filters: partyWithName: Jackman, Alan P (X)

5 results (24ms)   

View Results as: JSON ATOM CSV
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream,...
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream,...
Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH4+) and nitrate (NO3−) concentration gradients suggested the upper region of the cores supported coupled nitrification–denitrification, where groundwater-derived NH4+ was first oxidized to NO3− then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank–Nicolson finite difference approximation...
Abstract: Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ∼3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss....
Soluble reactive phosphorus (SRP) transport/retention was determined at four sites in three rainforest streams draining La Selva Biological Station, Costa Rica. La Selva is located at the base of the last remaining intact rainforest transect from 30 m above sea level to 3000 m along the entire Caribbean slope of Central America. Steam SRP levels can be naturally high there due to regional, geothermal groundwater discharged at ambient temperature. Monitoring since 1988 has revealed distinctive long-term differences in background SRP and total P (TP) for three streams in close proximity, and identified the impact of ENSO (El Nino Southern Oscillation) events on SRP-enriched reaches. Mean interannual SRP concentrations...