Skip to main content
Advanced Search

Filters: partyWithName: Koehler, R.D. (X) > partyWithName: Suleimani, E.N. (X)

13 results (25ms)   

View Results as: JSON ATOM CSV
thumbnail
Potential tsunami hazards for the Fox Islands communities of Unalaska/Dutch Harbor and Akutan were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Unalaska and Akutan are thought to be thrust earthquakes in the Fox Islands region with magnitudes ranging from Mw 8.8 to Mw 9.1 that have their greatest slip at 30-40 km (18-25 mi) depth. We also consider Tohoku-type ruptures and an outer-rise...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential tsunami hazards for the city of Sand Point, on Popof Island in the Shumagin Islands archipelago. We numerically modeled the extent of inundation from tsunami waves generated by local and distant earthquake sources. We considered the results in light of historical observations. The worst-case scenarios are defined by analyzing results of the sensitivity study of the tsunami dynamics with respect to different slip distributions along the Aleutian megathrust. For the Sand Point area, the worst-case scenarios are thought to be thrust earthquakes in the Shumagin Islands region with magnitudes...
thumbnail
Potential tsunami hazard for the Umnak Island community of Nikolski is evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Nikolski are thought to be thrust earthquakes in the Umnak Island region with their greatest slip at 10-30 km (6.2-19 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture in the area of Umnak Island. The maximum predicted water depth on Main Street is about 15 m (49 ft), while the maximum current...
thumbnail
In this report, we evaluate potential tsunami hazards for southeastern Alaska communities of Elfin Cove, Gustavus, and Hoonah and numerically model the extent of inundation from tsunami waves generated by tectonic and landslide sources. We perform numerical modeling of historic tsunami events, such as the tsunami triggered by the 1964 Great Alaska Earthquake, and the tsunami waves generated by the recent 2011 Tohoku and 2012 Haida Gwaii earthquakes. Hypothetical tsunami scenarios include variations of the extended 1964 rupture, megathrust earthquakes in the Prince William Sound and Alaska Peninsula regions, and a Cascadia megathrust earthquake. Local underwater landslide events in Taylor Bay and Port Frederick,...
thumbnail
We evaluate potential tsunami hazards for the city of Valdez and numerically model the extent of inundation from tsunamis generated by earthquake and landslide sources. Tsunami scenarios include a repeat of the tsunami triggered by the 1964 Great Alaska Earthquake, as well as hypothetical tsunamis generated by an extended 1964 rupture, a Cascadia megathrust earthquake, and earthquakes from the Prince William Sound and Kodiak asperities of the 1964 rupture. Local underwater landslide events in Port Valdez are also considered as credible tsunamigenic scenarios. Results of numerical modeling are verified by simulating the tectonic and landslide-generated tsunamis in Port Valdez observed during the 1964 earthquake....
thumbnail
Potential tsunami hazards for the community of Chenega Bay, located on Evans Island between Sawmill and Crab bays, were evaluated by numerically modeling the extent of inundation from tsunami waves generated by earthquakes. Tsunami scenarios include a repeat of the tsunami triggered by the 1964 Great Alaska Earthquake, as well as tsunamis generated by a hypothetically extended 1964 rupture, a hypothetical Cascadia megathrust earthquake, a hypothetical earthquake in the Kodiak asperity of the 1964 rupture, and a hypothetical Tohoku-type rupture in the Gulf of Alaska region. Results of numerical modeling are verified by simulations of the tectonic tsunami observed in Chenega Cove during the 1964 earthquake. The results...
thumbnail
In this report we evaluate potential tsunami hazards for the southeastern Alaska community of Yakutat and numerically model the extent of inundation from tsunami waves generated by tectonic and landslide sources. We use numerical modeling of historical tsunami events at Yakutat, such as the tsunami triggered by the 1964 Great Alaska Earthquake, and the tsunami waves generated by the recent 2011 Tohoku earthquake, to verify the tsunami model. Potential hypothetical tsunami sources include variations of the extended 1964 rupture, megathrust earthquakes in the Prince William Sound and Alaska Peninsula regions, and earthquakes in the Yakataga-Yakutat area, including the historical September 10, 1899, earthquake. Local...
thumbnail
In this report, we evaluate potential tsunami hazards for the southeastern Alaska community of Juneau and numerically model the extent of inundation from tsunami waves generated by tectonic and submarine landslide sources. We calibrate our tsunami model by numerically simulating the 2011 Tohoku tsunami at Juneau and comparing our results to instrument records. Analysis of calculated and observed water level dynamics for the 2011 event in Juneau reveals that the model underestimates the observed wave heights in the city by a factor of two, likely due to complex tsunami-tide interactions. We compensate for this numerical underestimation by doubling the coseismic slip of the hypothetical tsunami sources in our models....
thumbnail
The purpose of this study is to evaluate potential tsunami hazards for the community of Sitka. We numerically modeled the extent of inundation from tsunami waves generated by near- and far-field tectonic sources. We performed numerical modeling of historic events at Sitka, such as the tsunami triggered by the 1964 Great Alaska Earthquake, and the tsunami waves generated by the recent 2011 Tohoku and 2012 Haida Gwaii earthquakes. Hypothetical tsunami scenarios include variations of the extended 1964 rupture, megathrust earthquakes in the Alaska Peninsula region and in the Cascadia subduction zone, and a thrust earthquake in the region of the Queen Charlotte-Fairweather fault zone. Results of numerical modeling combined...
thumbnail
Potential tsunami hazards for the Alaska Peninsula communities of King Cove and Cold Bay were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing the tsunami dynamics related to various slip distributions along the Aleutian megathrust. Our results show that the worst-case scenarios for King Cove and Cold Bay are thrust earthquakes in the western Alaska Peninsula region, with magnitudes ranging from Mw 8.9 to Mw 9.3, which have their greatest slip at 10-20 km (6-12 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential potential tsunami hazard for the communities of Kodiak, Womens Bay, and for the U.S. Coast Guard base on Kodiak Island by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Alaska-Aleutian megathrust. The worst-case scenarios for the Kodiak communities are thought to be the subduction zone earthquakes offshore Kodiak Island with their greatest slip at 5-35 km (3.1-22...
thumbnail
The purpose of this study is to evaluate potential tsunami hazards for the Prince William Sound communities of Cordova and Tatitlek. We numerically model the extent of inundation from tsunami waves generated by earthquake sources and consider the results in light of historical observations. Tsunami scenarios include a repeat of the tsunami triggered by the 1964 Great Alaska Earthquake as well as tsunami waves generated by the following hypothetical scenarios: An extended 1964 rupture, a Cascadia megathrust earthquake, various earthquakes in Prince William Sound, and a Tohoku-type earthquake in the Gulf of Alaska region. Results of our numerical modeling, combined with historical observations, are designed to provide...
thumbnail
Potential tsunami hazard for the Alaska Peninsula communities of Chignik and Chignik Lagoon is evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Alaska-Aleutian megathrust. The worst-case scenarios for Chignik area communities are thought to be thrust earthquakes along the Alaska Peninsula with their greatest slip at 5-35 km (3.1-22 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture along the Alaska Peninsula. The maximum predicted water depth on Anderson Street...


    map background search result map search result map Tsunami inundation maps of Port Valdez, Alaska Tsunami inundation maps of Sitka, Alaska Tsunami inundation maps of Cordova and Tatitlek, Alaska Tsunami inundation maps of the villages of Chenega Bay and northern Sawmill Bay, Alaska Tsunami inundation maps of Elfin Cove, Gustavus, and Hoonah, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Tsunami inundation maps for King Cove and Cold Bay communities, Alaska Tsunami inundation maps for Yakutat, Alaska Tsunami inundation map for the village of Nikolski, Alaska Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska Tsunami inundation maps for the city of Sand Point, Alaska Updated tsunami inundation maps of the Kodiak area, Alaska Tsunami inundation maps for Juneau, Alaska Tsunami inundation maps for the city of Sand Point, Alaska Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska Tsunami inundation maps of the villages of Chenega Bay and northern Sawmill Bay, Alaska Tsunami inundation map for the village of Nikolski, Alaska Tsunami inundation maps of Sitka, Alaska Tsunami inundation maps of Port Valdez, Alaska Tsunami inundation maps for Yakutat, Alaska Updated tsunami inundation maps of the Kodiak area, Alaska Tsunami inundation maps for King Cove and Cold Bay communities, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Tsunami inundation maps of Elfin Cove, Gustavus, and Hoonah, Alaska Tsunami inundation maps for Juneau, Alaska Tsunami inundation maps of Cordova and Tatitlek, Alaska