Skip to main content
Advanced Search

Filters: partyWithName: LCC Network Data Steward (X) > partyWithName: Yvonne Allen (X)

17 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In large river ecosystems, the timing, extent, duration and frequency of floodplain inundation greatly affect the quality of fish and wildlife habitat and the supply of important ecosystem goods and services. Seasonal high flows provide connectivity from the river to the floodplain, and seasonal inundation of the floodplain governs ecosystem structure and function. River regulation and other forms of hydrologic alteration have altered the connectivity of many rivers with their adjacent floodplain – impacting the function of wetlands on the floodplain and in turn, impacting the mainstem river function. Conservation and management of remaining floodplain resources can be improved through a better understanding of...
thumbnail
This dataset features suitable habitat at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled along the intersection...
thumbnail
This dataset features inundated areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. To model river stage specific inundation for the upper section, discharge for each Landsat 8 overpass date was entered as the upstream condition and the corresponding...
thumbnail
This dataset features suitable habitat connected to the main channel (based on floodplain inundation) within managed areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section...
A landscape level AG spawning suitability data layer was developed to screen for landscape level features indicating locations that may be suitable for AG spawning within the lower Mississippi river corridor. Suitability was determined using a combination of inundation frequency, land cover, and thermal characteristics derived from related landscape level analyses (see below). The result for each evaluation was coded to display the predicted suitability for AG spawning . Habitat suitablility was informed by an alligator gar telemetry project on the St. Catherine Creek National Wildlife Refuge south of Natchez, MS. Approximately 20 fish were tagged in 2010, 2012 and 2013 and movement patterns on the floodplain were...
This research will (1) develop a multi-model application to simulate streamflow using a monthly water balance model and daily time step hydrologic models (physical-process based and statistical) for all watersheds of the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative and (2) provide products from these models (flow characteristics - magnitude, timing, duration, rate of change, and frequency) for a range of configurations (current and future climate and landscape) through a web interface which can be used to inform management decisions.
The alligator gar (Atractosteus spatula; AG) is a large, long-lived, physostomous fish that prefer slow-moving rivers, bayous, and oxbows most of the year, and require access to inundated floodplains or wetland vegetation for spawning and nursery habitats (Inebnit 2009; Kluender 2011, Buckmeier 2013). Historically, AG were distributed throughout the central U.S., ranging from Oklahoma southward to the Gulf of Mexico but more recently, abundances have declined and AG is now considered vulnerable to localized extirpation (Ferrara 2001) . Several authors have cited habitat alteration and overexploitation as the most important factors in the pervasive decline in abundance (Robinson and Buchanan 1988; Simon and Wallus...
thumbnail
This dataset features suitable depth (0.2 m ≤ depth ≤ 2.0 m) at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled...
thumbnail
This dataset features floodplain depth (in meters) at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled along the...
thumbnail
This dataset features suitable habitat connected to the main channel (based on floodplain inundation) at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and...
This project maps floodplain inundation frequency at the landscape scale in the south central United States. Using 15-40 images per Landsat scene, we established a wide range of possible flood frequencies across a variety of rising and falling river stages. This method represents a flexible approach that can be configured to define habitat availability for a variety of terrestrial and aquatic species.
thumbnail
Alligator Gar, Atractosteus spatula, is an iconic species native to lowland floodplain river systems where they play an important role as top predators and by linking landscapes through their movement. Alligator Gar is also an important native fisheries species in the Trinity River. Disruption of river-floodplain connectivity is implicated in declining populations of Alligator Gar across much of its range. Successful management and conservation of Alligator Gar populations will be aided by an understanding of the relationship between flow and recruitment, particularly the availability and suitability of off-channel habitats utilized by this species for reproduction.
St. Catherine Creek NWR, outside of Natchez, MS is part of the Lower Mississippi River floodplain and provides valuable aquatic and upland habitats for a large diversity of both terrestrial and aquatic organisms. Federal and state fisheries managers both recognize the importance of this floodplain habitat as an integral part of the large river ecosystem and many state partners have crafted management plans that seek to promote conservation activities that enhance and preserve this important resource. The frequency, timing and duration of Mississippi River flooding, drives the spatial extent of floodplain inundation which in turn determines habitat quality and suitability of floodplain habitats for both aquatic and...
thumbnail
This dataset features inundated areas connected to the main channel at discharges from 15,000 cfs to 95,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. To model river stage specific inundation for the upper section, discharge for each Landsat 8 overpass date was entered as the upstream...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alligator Gar, Complete, Conservation Design, Conservation NGOs, All tags...


    map background search result map search result map Quantification of Alligator Gar Recruitment Dynamics Using a River-Stage Specific Floodplain Inundation Model GCPO Inundation Frequency Mosaic (2017) Assessment of Water Availability and Streamflow Characteristics in the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative for Current and Future Climate and Landscape Conditions PRMS_Model_IHA_Metrics_Median_Future_Difference River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning within managed areas in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas River stage-specific GIS data layers depicting connectivity based on inundation in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain depth in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning within managed areas in the lower Trinity River of Texas Quantification of Alligator Gar Recruitment Dynamics Using a River-Stage Specific Floodplain Inundation Model River stage-specific GIS data layers depicting floodplain depth in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas River stage-specific GIS data layers depicting connectivity based on inundation in the lower Trinity River of Texas GCPO Inundation Frequency Mosaic (2017) PRMS_Model_IHA_Metrics_Median_Future_Difference