Skip to main content
Advanced Search

Filters: partyWithName: Lucas Fortini (X) > Types: Citation (X)

7 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models...
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21%...
Hawaiian forest birds are imperiled, with fewer than half the original >40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate‐based range losses for the critically endangered Kaua’i endemics ‘akeke’e (Loxops caeruleirostris) and ‘akikiki (Oreomystis bairdi) by end‐of‐century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensified conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered....
thumbnail
This raster indicates modeled habitat for various species under current and future conditions. Using the Price et al. (2012) parameters, we modeled species ranges as a function of elevation, temperature, and precipitation as described in Jacobi et al. (2016). Our methods departed slightly from their procedure in that we did not exclude non-pioneer-classified species from young lava flows. Jacobi, J.J., Camp, R.J., Berkowitz, S.P., Brinck, K.W., Fortini, L.B., Price, J.P., and Loh, R.M. 2016. Assess the potential impacts of projected climate change on vegetation management strategies within Hawaii Volcanoes National Park. PICSC Final Report. URL: https://nccwsc.usgs.gov/ Price, J.P., Jacobi, J.D., Gon, S.M., III,...
As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By...
thumbnail
This is the primary output dataset from the project to access the potential impacts of climate change on vegetation management strategies within Hawaii Volcanoes National Park (HAVO). The key objective of this project was to combine climate projections from the International Pacific Research Center (IPRC) and plant distribution models from Price et al. to produce a series of projected species range maps over the next century. Although the project focused on HAVO, the projected species range maps were created for seven of the main Hawaiian Islands. We stored the model output as rasters (.TIF files); additionally we created multi-panel maps of these rasters that are available separately. In summary, this dataset consists...
Anticipating potential shifts in plant communities has been a major challenge in climate change ecology. In Hawaiʻi, where conservation efforts tend to be habitat focused, the lack of projections of vegetation shifts under future climate is a major knowledge gap for developing management actions aimed at climate change mitigation and adaptation. • As a first approximation of such changes, we have modeled potential shifts of terrestrial vegetation across the Hawaiian landscape between now and the end of this century. Our approach relies on modeling the relation between current climate and the distribution of broad, climatically determined moisture zones (for example, dry, mesic, and wet areas) that form the basis...


    map background search result map search result map Projected species range maps over the next century Modeled ranges of Hawaiian plant species under current and future conditions under three climate downscaling scenarios Projected species range maps over the next century Modeled ranges of Hawaiian plant species under current and future conditions under three climate downscaling scenarios