Skip to main content
Advanced Search

Filters: partyWithName: Moody, John A (X)

26 results (37ms)   

View Results as: JSON ATOM CSV
The flood wave on the upper Mississippi River started downstream near St. Paul, Minnesota, in June 1993. The maximum discharge propagated downstream at about 50 kilometers per day and was 5 to 7 times the mean daily discharge at streamgaging sites on the river. The propagation speed of the flood wave was influenced more by hydrologic factors such as tributary inflow and flood-plain storage than by hydraulic factors. The maximum discharge at St. Louis, Missouri (29,700 m3/s) occurred on August 1, 1993; but because of flood-plain storage resulting from levee failures and seepage through and under levees downstream, the maximum discharge at Thebes, Illinois, (27,700 m>3/s) did not occur until August 7 which was about...
Categories: Publication; Types: Citation
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge...
Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 m from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s−1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers...
Categories: Publication; Types: Citation
Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 m from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s−1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers...
Categories: Publication; Types: Citation
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network.The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic...
Volumes of eroded sediment after wildfires vary substantially throughout different geologic terrains across the western United States. These volumes are difficult to compare because they represent the response to rainstorms and runoff with different characteristics. However, by measuring the erosion response as the erodibility efficiency of water to detach and transport sediment on hillslopes and in channels, the erosion response from different geologic terrains can be compared. Specifically, the erodibility efficiency is the percentage of the total available stream power expended to detach, remobilize, or transport a mass of sediment. Erodibility efficiencies were calculated for the (i) initial detachment, and...
We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no...
Categories: Publication; Types: Citation
Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40°–550°C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs)....
Volumes of eroded sediment after wildfires vary substantially throughout different geologic terrains across the western United States. These volumes are difficult to compare because they represent the response to rainstorms and runoff with different characteristics. However, by measuring the erosion response as the erodibility efficiency of water to detach and transport sediment on hillslopes and in channels, the erosion response from different geologic terrains can be compared. Specifically, the erodibility efficiency is the percentage of the total available stream power expended to detach, remobilize, or transport a mass of sediment. Erodibility efficiencies were calculated for the (i) initial detachment, and...
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1–1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1–1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis.Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces...
Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities...
Categories: Publication; Types: Citation
Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the burn severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity Φ was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the burn severity along hillslope flow paths. The runoff response and the...
Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the burn severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity Φ was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the burn severity along hillslope flow paths. The runoff response and the...
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network.The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic...
Summary Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(θi), as a function of initial soil moisture content, θi, ranging from extremely dry conditions (θi < 0.02 cm3 cm−3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of...
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre-fire rates. The maximum unit-area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1....
Before 1900, the Missouri–Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987–2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100–150 million metric tons per year, which represent about half the decrease in sediment discharge...
A catastrophic wildfire in the foothills of the Rocky Mountains near Boulder, Colorado provided a unique opportunity to investigate soil conditions immediately after a wildfire and before alteration by rainfall. Measurements of near-surface (< 6 cm) soil properties (temperature, volumetric soil-water content, θ; and matric suction, ψ), rainfall, and wind velocity were started 8 days after the wildfire began. These measurements established that hyper-dry conditions (θ < ~ 0.02 cm3 cm− 3; ψ > ~ 3 × 105 cm) existed and provided an in-situ retention curve for these conditions. These conditions exacerbate the effects of water repellency (natural and fire-induced) and limit the effectiveness of capillarity and gravity...