Skip to main content
Advanced Search

Filters: partyWithName: Pacific Islands CASC (X) > partyWithName: Han Tseng (X)

7 results (48ms)   

View Results as: JSON ATOM CSV
thumbnail
Measurements of fog, wind, fog interception, soil moisture, and fog effects on plant water use and plant survival were collected to test a model to estimate CWI as a function of fog-water movement and vegetation characteristics.
thumbnail
Measurements of fog, wind, fog interception, soil moisture, and fog effects on plant water use and plant survival were collected along with these vegetation data to test a model to estimate CWI as a function of fog-water movement and these vegetation characteristics.
thumbnail
Data of a calibrated fog gauge at each of the five stations. Parameters include total fog water collection, wind-driven rain collection, fog-only water collection, cloud water flux, and cloud liquid water content.
The outputs of two versions of the Single-Layer Wet Canopy Water Balance model. Parameters include cloud water interception, evaporation of rainwater or fog water from wet canopy (interception evaporation), and canopy water storage.
thumbnail
Measurements of fog, wind, fog interception, soil moisture, and fog effects on plant water use and plant survival were collected to test a model to estimate CWI as a function of fog-water movement and vegetation characteristics.
Cloud-water interception (CWI) is the process by which fog or cloud water droplets are captured and accumulate on the leaves and branches of plants, some of which drips to the ground. Prior studies in Hawai'i indicate that CWI is highly variable and can contribute substantially to total precipitation. In this study, we monitored CWI and other processes at five mountain field sites on the Islands of Oʻahu, Maui, and Hawaiʻi to explore how CWI (1) varies with different climate and vegetation characteristics, (2) affects plant water use and growth, and (3) contributes to water resources. Results show that annual CWI varied from 158 to 910 mm, accounting for 3-34% of total water input at individual sites. This large...
Categories: Publication; Types: Citation
thumbnail
Measurements of fog, fog interception parameters, and climate variables such as wind, radiation, temperature, and humidity, along with vegetation data, to test a model to estimate CWI as a function of fog-water movement and vegetation characteristics.


    map background search result map search result map Canopy Water Balance Input Data for 5 sites in Hawai'i from 2016-2019 Vegetation Characterization for 5 sites in Hawai'i from 2016-2019 Calibrated Fog Gauge Data for 5 sites in Hawai'i from 2016-2019 Canopy Water Balance Output Data for 5 sites in Hawai'i from 2016-2019 Climate Data for 5 sites in Hawai'i from 2016-2019 Cloud Water Interception Parameters for 5 sites in Hawai'i from 2016-2019 Vegetation Characterization for 5 sites in Hawai'i from 2016-2019 Canopy Water Balance Input Data for 5 sites in Hawai'i from 2016-2019 Calibrated Fog Gauge Data for 5 sites in Hawai'i from 2016-2019 Canopy Water Balance Output Data for 5 sites in Hawai'i from 2016-2019 Climate Data for 5 sites in Hawai'i from 2016-2019 Cloud Water Interception Parameters for 5 sites in Hawai'i from 2016-2019