Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey (X) > partyWithName: Benjamin B Mirus (X)

6 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information on landslide occurrence across the entire U.S. The data release includes digital...
thumbnail
A hydrologic monitoring network was installed to investigate landslide hazards affecting the railway corridor along the eastern shore of Puget Sound between Seattle and Everett, near Mukilteo, Washington. During the summer of 2015, the U.S. Geological Survey installed instrumentation at four sites to measure rainfall and air temperature every 15 minutes. Two of the four sites are installed on contrasting coastal bluffs, one landslide scarred and one vegetated. At these two sites, in addition to rainfall and air temperature, volumetric water content, pore pressure, soil suction, soil temperature (via hydrologic instrumentation), and barometric pressure were measured every 15 minutes. The instrumentation was designed...
This data release includes time-series, qualitative descriptions, and laboratory testing data from two monitoring stations installed in Puerto Rico following Hurricane Maria in 2017, which led to tens of thousands of landslides across the island (Bessette-Kirton et al., 2017). The stations were installed in July of 2018 to investigate subsurface hydrologic response to rainfall and develop a quantitative link between rainfall and landsliding. The Toro Negro site is located within the state protected Toro Negro rainforest near 18°10’N, 66°34’W and the Utuado site is located outside the city of Utuado near 18°17’N, 66°39’W. The soil found at the Toro Negro site is low-permeability, fine-grained and cohesive, and underlain...
thumbnail
This data release includes time-series data from two monitoring stations in a small drainage basin burned in the 2014 Silverado Fire, Orange County, California. One station (upper station) is located in the headwaters of the study area (33 45’39.10”N, 117 35’17.48”W, WGS84). The other station (lower station) is located at the outlet of the study area (33 45’04.61”N, 117 35’12.54”W). The data were collected between November 15, 2014 and January 14, 2016. The data include continuous 1-minute time series of rainfall and soil water content recorded at the both stations and intermittent (during rain storms) 50-Hz time series of flow-induced ground vibrations recorded by geophones at the lower station. The soil water...
This data release includes the detailed results from laboratory testing of colluvium and landslide deposit specimens collected from coastal bluffs near Mukilteo, Washington. The specimens were collected as part of a larger effort to characterize the potential for shallow landslide initiation along the Puget Sound Railway corridor between the cities of Everett and Seattle. The details of the specimen collection and research objectives of the study are provided in: “Assessing Landslide Potential on Coastal Bluffs near Mukilteo, Washington—Geologic Site Characterization for Hydrologic Monitoring” (Mirus et al., 2016). Laboratory experiments includes test to estimate the following properties: specific gravity, porosity,...


    map background search result map search result map Results of Hydrologic Monitoring on Landslide-prone Coastal Bluffs near Mukilteo, Washington Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Post-wildfire debris-flow monitoring data, 2014 Silverado Fire, Orange County, California, November 2014 to January 2016 Landslide Inventories across the United States Post-wildfire debris-flow monitoring data, 2014 Silverado Fire, Orange County, California, November 2014 to January 2016 Field data used to support numerical simulations of variably-saturated flow focused on variability in soil-water retention properties for the U.S. Geological Survey Bay Area Landslide Type (BALT) Site #1 in the East Bay region of California, USA Results of Hydrologic Monitoring on Landslide-prone Coastal Bluffs near Mukilteo, Washington Landslide Inventories across the United States