Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - Earth Resources Observation and Science (EROS) Center (X)

5 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of area and aerial extent of land-use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use land class data represent yearly simulated future land use for the High Plains from 2009 to 2050 These data were developed using the FOREcasting SCEnarios (FORE-SCE) of future land cover model (Sohl and others, 2007; Sohl and Sayler 2008) for two (A2 and B2) of the...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of land use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use data represent yearly estimated land use for the High Plains from 1949 to 2008. These data were developed using the FOREcasting SCEnarios of future land cover (FORE-SCE) model (Sohl and others, 2007) and then processed using a Geographic Information System (GIS). The GIS software used to process...
thumbnail
The USGS’s FORE-SCE model was used to produce land-use and land-cover (LULC) projections for the conterminous United States. The projections were originally created as part of the "LandCarbon" project, an effort to understand biological carbon sequestration potential in the United States. However, the projections are being used for a wide variety of purposes, including analyses of the effects of landscape change on biodiversity, water quality, and regional weather and climate. The year 1992 served as the baseline for the landscape modeling. The 1992 to 2005 period was considered the historical baseline, with datasets such as the National Land Cover Database (NLCD), USGS Land Cover Trends, and US Department of Agriculture's...
thumbnail
Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Estimates of area and aerial extent of land-use categories are an essential component for computing the water budget of the High Plains aquifer. These raster land-use land class data represent yearly simulated future land use for the High Plains from 2009 to 2050 These data were developed using the FOREcasting SCEnarios (FORE-SCE) of future land cover model (Sohl and others, 2007; Sohl and Sayler 2008) for two (A2 and B2) of the...


    map background search result map search result map Conterminous United States Land Cover Projections - 1992 to 2100 The Relative Impacts of Climate and Land-use Change on Conterminous United States Bird Species from 2001 to 2075 DS-777 Annual Model-Backcasted Land-Use/Land-Cover Rasters from 1949 to 2008 for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the B2 Climate Scenario for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the A2 Climate Scenario for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Forecasted Land-Use/Land-Cover Rasters from 2009 to 2050 for the B2 Climate Scenario for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Annual Model-Backcasted Land-Use/Land-Cover Rasters from 1949 to 2008 for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Conterminous United States Land Cover Projections - 1992 to 2100 The Relative Impacts of Climate and Land-use Change on Conterminous United States Bird Species from 2001 to 2075