Skip to main content
Advanced Search

Filters: Types: Map Service (X) > Tags: {"scheme":"none","name":"chesapeake bay watershed"} (X)

67 results (45ms)   

View Results as: JSON ATOM CSV
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
This Child Item contains (1) a table of trends in eight annual streamflow statistics for the time periods 1940-1969, 1970-1999, and 2000-2018, and (2) a .zip file of plots of the eight statistical trends for the three time periods. The annual streamflow statistics and their trends were computed by Climate Year (CY) for 1-,7- and 30-day minima and by Water Year (WY) for 1-,7- and 30-day maxima, median and mean. Streamgages from the original dataset (n = 409) were excluded from one or more time periods of analysis because of extensive data gaps that would interrupt trend lines; therefore, streamgages were indexed into the earliest possible time period relative to their installation date (for example, a streamgage...
thumbnail
This Child Item contains a shapefile (ArcGIS Pro version 2.5.0) of the original 409 USGS streamgage locations active within the Chesapeake Bay Watershed (CBWS) through September 30, 2018. Streamflow trends and EFlow statistics tables from this data release may be joined to the shapefile by either the "Streamgage_ID" or "Streamgage_Name" attributes to aid in spatial analysis within a GIS.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2021. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. The file containing monthly loads for all applicable NTN monitoring stations is provided in the "Attached Files" section. First posted:...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the regular annual load (non-Kalman) results are flow normalized to integrate out the year-to-year variability...
thumbnail
The hydrologic regime of rivers and streams is a major determinant of habitat quality for fish and aquatic invertebrates. Long-term streamflow data were compiled and multidecadal streamflow trends and ecological flow (EFlow) statistics were calculated in support of the United States Geological Survey (USGS) Chesapeake Bay Science Initiative toward understanding fish habitat and health in the Chesapeake Bay Watershed (CBWS). A dataset comprising all streamgages (n = 409) reporting daily means of streamflow within the CBWS and remaining active as of September 30, 2018 (the end of Water Year [WY] 2018), independent of streamgage installation date, was retrieved from the USGS National Water Information System (NWIS)....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.


map background search result map search result map Chesapeake Bay Nontidal Network 1985-2016: Annual loads Chesapeake Bay Nontidal Network 1985-2016: Monthly loads Chesapeake Bay Nontidal Network 1985-2016: WRTDS output data Chesapeake Bay River Input Monitoring Network 1985-2017: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2017: Monthly loads Chesapeake Bay Nontidal Network 1985-2017: WRTDS input data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2018 Chesapeake Bay River Input Monitoring Network 1985-2018: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2018: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2019: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2019: Monthly loads Chesapeake Bay River Input Monitoring Network 1985-2019: Short- and long-term trends Multidecadal Streamflow Trends and Ecological Flow Statistics at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) Streamflow Statistic Trends at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) USGS Streamgages active within the Chesapeake Bay Watershed through Water Year 2018 Chesapeake Bay River Input Monitoring Network 1985-2020: Monthly loads Chesapeake Bay River Input Monitoring Network 1985-2020: WRTDS input data Chesapeake Bay Nontidal Network 1985-2020: Monthly loads (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: Short- and long-term trends (ver. 2.0, January 2023) Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS input data Chesapeake Bay Nontidal Network 1985-2016: Annual loads Chesapeake Bay Nontidal Network 1985-2016: Monthly loads Chesapeake Bay Nontidal Network 1985-2016: WRTDS output data Chesapeake Bay River Input Monitoring Network 1985-2017: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2017: Monthly loads Chesapeake Bay Nontidal Network 1985-2017: WRTDS input data Chesapeake Bay River Input Monitoring Network 1985-2018: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2019: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2019: Monthly loads Chesapeake Bay River Input Monitoring Network 1985-2019: Short- and long-term trends Multidecadal Streamflow Trends and Ecological Flow Statistics at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) Streamflow Statistic Trends at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) USGS Streamgages active within the Chesapeake Bay Watershed through Water Year 2018 Chesapeake Bay River Input Monitoring Network 1985-2020: Monthly loads Chesapeake Bay River Input Monitoring Network 1985-2020: WRTDS input data Chesapeake Bay Nontidal Network 1985-2020: Monthly loads (ver. 2.0, January 2023) Chesapeake Bay Nontidal Network 1985-2020: Short- and long-term trends (ver. 2.0, January 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2018 Chesapeake Bay River Input Monitoring Network 1985-2018: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS input data