Skip to main content
Advanced Search

Filters: Types: OGC WFS Layer (X) > Tags: {"scheme":"None","name":"united states"} (X) > Extensions: Shapefile (X)

614 results (94ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, mean tidal range, and shoreline change rate are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of...
thumbnail
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used to identify sediment texture and sea-floor habitats.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Beckman Coulter Multisizer 3, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Coast, Baseline, CMGP, Coastal and Marine Geology Program, DSAS, All tags...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release and other associated products represent an expansion...
thumbnail
The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable to change. This data release and other associated products represent an expansion...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the photos and videos are used to explore the nature of the sea floor; in conjunction with high-resolution geophysical data, the observations are used to make interpretive maps of sedimentary environments and validate acoustic...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, MA CZM, All tags...
thumbnail
This data release contains reference baselines for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each transect were associated with each transect. Next, it was determined which points were one the foreshore, and then a linear regression was fit through the foreshore points. Beach slope was defined as the slope...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Beach, Atlantic Coast, Bald Head Island, Bogue Banks, Browns Inlet, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
These mapped faults are modified from Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez) in Volume J, The Geology of North America (1991); Plate 2, Geologic map of the U.S. Appalachians showing the Laurentian margin and the Taconic orogen (compiled by D.R. Rankin, A.A. Drake, and N.M. Ratcliffe) in Volume F-2, The Geology of North America (1989); and Plate 9, Tectonic map of the Ouachita orogen (compiled by W.A. Thomas) in Volume F-2, The Geology of North America (1989). This dataset contains basic data and interpretations developed and compiled by the U.S. Geological Survey's Framework Studies and Assessment of the Gulf Coast Project. Other major sources of data...


map background search result map search result map Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southeastern Florida (FLse) Shorelines of the southern North Carolina (NCsouth) coastal region used in shoreline change analysis Winter Season Habitat Categories Shapefile DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 Rate of shoreline change of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) Faults in the Gulf Coast [gcfaultsg] Intersects for the region of the Elizabeth Islands, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baselines for the coast of Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 2010 Shorelines for Vieques, Culebra, and Main Island of Puerto Rico 1970s Shorelines for Vieques and Culebra, Puerto Rico Shorelines of the Florida panhandle (FLph) coastal region used in shoreline change analysis Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Reference baselines used to extract shorelines for the West Coast of the United States DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile) DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2012 Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Baselines for the coast of Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 1970s Shorelines for Vieques and Culebra, Puerto Rico shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Rate of shoreline change of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Shorelines of the southern North Carolina (NCsouth) coastal region used in shoreline change analysis 2010 Shorelines for Vieques, Culebra, and Main Island of Puerto Rico Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southeastern Florida (FLse) Winter Season Habitat Categories Shapefile Shorelines of the Florida panhandle (FLph) coastal region used in shoreline change analysis Reference baselines used to extract shorelines for the West Coast of the United States Faults in the Gulf Coast [gcfaultsg]