Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Tags: {"scheme":"none"} (X) > partyWithName: U.S. Geological Survey (X) > partyWithName: Water Resources (X)

55 results (18ms)   

View Results as: JSON ATOM CSV
thumbnail
A three-dimensional groundwater flow model using MODFLOW-NWT was developed to evaluate historical and potential stream capture in the lower Humboldt River Basin, Nevada. The Humboldt River Basin is the only river basin that is contained entirely within the state of Nevada. The effect of groundwater pumping on the Humboldt River is not well understood. Tools are needed to determine stream capture and manage groundwater pumping in the Humboldt River Basin. Previous work has demonstrated that the river’s surface-water resource is sensitive to groundwater withdrawals, which have steadily increased since the 1950s for agriculture, municipal, and mining uses. A numerical groundwater flow model was developed for the purpose...
thumbnail
Benthic diatom assemblages are known to be indicative of water quality but have yet to be widely adopted in biological assessments in the United States due to several limitations. Our goal was to address some of these limitations by developing regional multi-metric indices (MMIs) that are robust to inter-laboratory taxonomic inconsistency, adjusted for natural covariates, and sensitive to a wide range of anthropogenic stressors. We aggregated bioassessment data from two national-scale federal programs and used a data-driven analysis in which all-possible combinations of 2-7 metrics were compared for three measures of performance. The datasets in this release support the Carlisle, et al. 2022 report cited herein....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018 Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). A recently published extension of WRTDS allows users to separate these estimates into high- and low-flow conditions. This data release contains (1) a table of daily high- and low-flow concentration and load estimates for NTN stations between 1985 - 2018 and (2) an R file that contains...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
This dataset has been archived; it has been superseded by version 1.1 (December 2022) which can be found at https://doi.org/10.5066/P9KODN4C. This U.S. Geological Survey data release provides surface-water quality, streamflow, and groundwater-elevation data collected within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven as part of a five-year comprehensive water-resources monitoring program. Water quality and quality-assurance data from seven sites on two rivers (Carmans River- 5 sites and Peconic River - 2 sites) in the CPB are included. Carmans River sites were sampled four times throughout...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Harris-Galveston Subsidence District and Fort Bend Subsidence District, constructed a finite-difference numerical groundwater-flow model of the northern Gulf Coast aquifer region for 1897 through 2018 using MODFLOW 6 with the Newton formulation solver to simulate groundwater flow and land-surface subsidence. Model parameter estimation and uncertainty analysis were conducted with PEST++ Iterative Ensemble Smoother software. The simulated results are described in the associated U.S. Geological Survey Professional Paper 1877. The model archive provided in this U.S. Geological Survey data release includes all the necessary files to run the MODFLOW 6 model and...
thumbnail
Resource managers and users seek information that can be used to balance the needs of competing uses of groundwater and streamflow in the Heeia watershed, Oahu. A previously constructed steady-state numerical groundwater-flow model for the island of Oahu, Hawaii (https://doi.org/10.3133/sir20205126) using MODFLOW-2005 with the Seawater Intrusion (SWI2) package was used to examine the effects of withdrawals in the watershed. Four simulations representing a baseline and various withdrawal conditions were run using the previously published numerical model. The baseline simulation represents conditions in 2001-10 which were used to calibrate the Oahu model and to which all other scenarios are compared. The three scenarios...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2021. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. The file containing annual loads for all applicable NTN monitoring stations is provided in the "Attached Files" section. First posted: July...
thumbnail
This dataset provides shapefile outlines of the 881 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is also included. This dataset is part of a larger data release of lake temperature model inputs and outputs for 881 lakes in the U.S. state of Minnesota (https://doi.org/10.5066/P9PPHJE2).
thumbnail
A suite of geophysical methods was used along the Cedar River in Cedar Rapids, Iowa to support the hydrogeologic characterization of the alluvial aquifer associated with the river and to assess the area for suitability for larger-scale airborne geophysics. The aquifer is comprised of sand and gravel, interbedded with finer sediments, and underlain by carbonate-dominated bedrock. The aquifer is the principal source of municipal drinking water for the City of Cedar Rapids. The raw data provided here includes waterborne continuous resistivity profiling (CRP) and continuous seismic profiling (CSP) data (collected at the same time), electrical resistivity tomography (ERT) profiles, and horizontal-to-vertical spectral...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river...
thumbnail
From October 2016 to July 2018, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and Maine Department of Transportation, collected surface, marine and borehole geophysical surveys to characterize the subsurface materials on land and under the water at a former mine facility in Brooksville, Maine. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials. Continuous seismic profiling (CSP) methods provide the depth to water bottom, and, when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials. Continuous resistivity profiling (CRP) and frequency domain electromagnetics (FDEM) methods...
thumbnail
This document provides a summary of surface water-quality, streamflow, and groundwater data collected by the U.S. Geological Survey (USGS) within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven under a five-year comprehensive water resources monitoring program. The surface water-quality data within the CPB for the 2018 water year (October 1, 2017 to September 30, 2018) includes data from the Carmans River and the Peconic River. The streams were sampled several times throughout the year at seven pre-determined locations. The Carmans River was sampled at five locations: 1) CARMANS RIVER AT...
thumbnail
In summer in Massachusetts, USA, preferential groundwater discharge zones are often colder than adjacent streambed areas that do not have substantial discharge. Therefore, discharge zones can efficiently be identified and mapped over space using heat as a tracer. This data release contains fiber-optic distributed temperature sensing (FO-DTS) data collected along the streambed interface of the main channel and tributaries of the upper Quashnet River, within approximately 1 km of Johns Pond, from June 14 to June 20, 2020. For these deployments a Salixa XT-DTS control unit (Salixa Ltd, Hertfordshire, UK) was used, and measurements were made over several day increments at 0.508 m linear resolution. Specific locations...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2021. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (representing the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective...
thumbnail
Dataset includes continuous discharge at the USGS (Station ID: 05485605) Fourmile Creek near Ankeny, IA DS1 gage site (http://waterdata.usgs.gov/usa/nwis/uv?site_no=05485605) as well as daily precipitation and water level data in select groundwater piezometers recorded in 10 minute intervals during the period Oct 1, 2013 to November 30 2013. Latitude and longitude data are provided for groundwater piezometer locations. This data release supports the following publication: Hubbard, L.E., S.H. Keefe, D.W. Kolpin, L.B. Barber, J.W. Duris, K.J. Hutchinson, and P.M. Bradley. Hydrologic Impact of Wastewater Contribution to Shallow Groundwater: Before and After Wastewater Discharge Cessation. Environmental Science: Water...
thumbnail
Airborne electromagnetic (AEM) and magnetic survey data were collected during March 2018 along 1,637 line line-kilometers over the western Hualapai Indian Reservation and surrounding areas. The survey was conducted as part of a study of the groundwater resources of the Truxton basin and Hualapai Plateau. The survey was designed to improve the understanding of the geometry of the major hydrostratigraphic contacts of the study area. Data were acquired by SkyTEM ApS with the SkyTEM 312 time-domain helicopter-borne electromagnetic system together with a Geometrics G822A cesium vapor magnetometer. The survey was flown at a nominal flight height of 30 meters (m) above terrain along block-style lines with a nominal spacing...
thumbnail
This USGS data release represents supplemental tabular data for an annual groundwater discharge by evapotranspiration (ET) from areas of spring-fed riparian vegetation, Stump Spring and Hiko Springs, Clark County, Nevada, 2016-18. The raw ET dataset contained multiple data gaps that were simulated and gap-filled with the water-level model utility in SeriesSEE, a USGS developed Microsoft Excel® addin. Continuous time-series data, including net radiation, sensible-heat flux, latent-heat flux, and ground-heat flux, from before and after the data gap(s) were used to simulate turbulent fluxes with multivariate regressions and the gramma transform, used for latent heat gaps after precipitation events. ET data were gap...
thumbnail
In June 2018, the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (EPA) collected geophysical measurements to help evaluate the suitability of a proposed landfill site for disposing mine-waste materials in Fredericktown, Missouri. Geophysical methods were used to evaluate and characterize the unconsolidated sediment (i.e., regolith) above the crystalline bedrock as well as determine depth bedrock. Land-based geophysical methods included frequency domain electromagnetic induction (FDEM), electrical resistivity tomography (ERT), horizontal-to-vertical spectral ratio passive seismic (HVSR), and shear-wave seismic refraction. Water-borne methods included FDEM surveys to characterize...


map background search result map search result map Precipitation, surface-water discharge, and groundwater elevation data for Fourmile Creek, Ankeny, Iowa, USA during October 1, 2013 to November 30, 2013 Geophysical Data Collected in the Cedar River Floodplain, Cedar Rapids, Iowa, 2015-2017 Borehole, Surface and Water-Borne Geophysical Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to July 2018 Geophysical Data Collected for an Assessment of a Proposed Landfill Site in Fredericktown, Missouri, June 2018 Airborne electromagnetic and magnetic survey, western Hualapai Indian Reservation near Grand Canyon West and Peach Springs, Arizona, 2018 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Supplemental Evapotranspiration Gap-filled Datasets from Stump Spring and Hiko Springs, Clark County, southern Nevada, 2016-18 Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 1 Lake information for 881 lakes 2019 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2019 Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Data Release for: A Web-Based Tool for Assessing the Condition of Benthic Diatom Assemblages in Streams and Rivers of the Conterminous United States Chesapeake Bay Nontidal Network 1985-2020: Annual loads (ver. 2.0, January 2023) Chesapeake Bay River Input Monitoring Network 1985-2021: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS output data Fiber-optic distributed temperature sensing data collected for improved mapping and monitoring of contaminated groundwater discharges along the upper Quashnet River, Mashpee and Falmouth, Massachusetts, USA 2020 MODFLOW-2005 and SWI2 models for assessing groundwater and surface-water interactions in the Heeia Watershed, Oahu, Hawaii MODFLOW 6 model and ensemble used in the simulation of groundwater flow and land subsidence in the northern part of the Gulf Coast aquifer, 1897-2018 (ver. 2.0, September 2023) MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Geophysical Data Collected for an Assessment of a Proposed Landfill Site in Fredericktown, Missouri, June 2018 Fiber-optic distributed temperature sensing data collected for improved mapping and monitoring of contaminated groundwater discharges along the upper Quashnet River, Mashpee and Falmouth, Massachusetts, USA 2020 Precipitation, surface-water discharge, and groundwater elevation data for Fourmile Creek, Ankeny, Iowa, USA during October 1, 2013 to November 30, 2013 Borehole, Surface and Water-Borne Geophysical Surveys at the Callahan Mine Superfund Site in Brooksville, Maine: October 2016 to July 2018 Geophysical Data Collected in the Cedar River Floodplain, Cedar Rapids, Iowa, 2015-2017 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) 2019 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York MODFLOW-2005 and SWI2 models for assessing groundwater and surface-water interactions in the Heeia Watershed, Oahu, Hawaii Airborne electromagnetic and magnetic survey, western Hualapai Indian Reservation near Grand Canyon West and Peach Springs, Arizona, 2018 MODFLOW-NWT Model Used to Evaluate Stream Capture Related to Groundwater Pumping, Lower Humboldt River Basin, Nevada (ver. 1.1, March 2024) Supplemental Evapotranspiration Gap-filled Datasets from Stump Spring and Hiko Springs, Clark County, southern Nevada, 2016-18 MODFLOW 6 model and ensemble used in the simulation of groundwater flow and land subsidence in the northern part of the Gulf Coast aquifer, 1897-2018 (ver. 2.0, September 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Chesapeake Bay Nontidal Network 1985-2020: Annual loads (ver. 2.0, January 2023) Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2019 Chesapeake Bay River Input Monitoring Network 1985-2021: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS output data Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 1 Lake information for 881 lakes Data Release for: A Web-Based Tool for Assessing the Condition of Benthic Diatom Assemblages in Streams and Rivers of the Conterminous United States