Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Tags: {"type":"ISO Topic Category"} (X) > Extensions: OGC Web Service (X)

23 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST Warner and others, 2019; Warner and others, 2010) model was used to simulate three-dimensional hydrodynamics and waves to study salinity intrusion in the Delaware Bay estuary for 2019. Salinity intrusion in coastal systems is due in part to extreme events like drought or low-pressure storms and longer-term sea level rise, threatening economic infrastructure and ecological health. Along the eastern seaboard of the United States, approximately 13 million people rely on the water resources of the Delaware River basin, which is actively managed to suppress the salt front (or ~0.52 daily averaged psu line) through river discharge targets. However, river discharge...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, Earth Science Services > Models > Weather Research/Forecast Models, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...


map background search result map search result map USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics 3D-hydrodynamic simulations in Delaware Bay (2019) forced with river discharge, tides, subtidal water levels, winds, and waves USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics 3D-hydrodynamic simulations in Delaware Bay (2019) forced with river discharge, tides, subtidal water levels, winds, and waves