Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Tags: {"type":"Theme","scheme":"Data Categories for Marine Planning"} (X)

285 results (73ms)   

View Results as: JSON ATOM CSV
thumbnail
This part of the data release presents topography data from northern Monterey Bay, California collected in September 2015 using a tripod-mounted Riegl VZ-1000 lidar scanner (USGS Field Activity 2015-668-FA). For each area surveyed, the scanner was placed at several positions which were selected to provide maximum line-of-sight coverage of the area of interest. Scans were typically conducted in panoramic mode, creating a detailed point cloud of all unobstructed surfaces in a 360 degree view of the scanner. At each scan position, co-registered photographic imagery was also collected with a scanner mounted DSLR camera. Scanner registration was performed by placing four or more cylindrical or flat reflective tripod-mounted...
thumbnail
This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, and supplemented with geologic structure (fault and fold) information following the methodology of Wong (2012). Reference Cited: Wong, F. L., Phillips, E.L., Johnson, S.Y., and Sliter, R.W., 2012, Modeling of depth...
thumbnail
This dataset is a LAS (industry-standard binary format for storing lidar point clouds) dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.094 meters (m); multibeam sonar, 0.501 m; single-beam sonar, 1.876 m. The LAS dataset was used to create digital elevation models (DEMs) of 10 m (32.8084 feet) and 1 m (3.28084 feet) resolution, of the approximate 1.75 square kilometer surveyed area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar...
thumbnail
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. From July 2019 to June 2020, the U.S. Geological Survey, in cooperation with the Missouri Department...
Categories: Data Release - Revised; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Bathymetry, Bathymetry and Elevation, Bethany, Caldwell County, Daviess County, All tags...
thumbnail
This dataset is a LAS (industry-standard binary format for storing large point clouds) dataset containing light detection and ranging (LiDAR) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 meters (m); multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. The LAS dataset was used to create a 10-m (32.8084 feet) digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area using the "LAS dataset to raster" tool in Esri ArcGIS, version 10.7. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS...
thumbnail
This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic-reflection data collected in 2009 and 2010 (USGS activities (S-15-10-NC, S-N1-09-MB, and S-06-11-MB) supplemented with outcrop and geologic structure from DS 781. The resulting grid covers was...
thumbnail
This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Santa Cruz map area, California. The vector data file is included in "Habitat_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., and Krigsman, L.M. (G.R. Cochrane and S.A. Cochran, eds.), 2016, California State Waters Map Series—Offshore of Santa Cruz, California: U.S. Geological Survey Open-File Report 2016-1024, pamphlet 40 p.,...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: CMHRP, Coastal and Marine Hazards and Resources Program, Continental/Island Shelf, Fisheries, Marine Nearshore Subtidal, All tags...
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
This dataset is a LAS dataset containing light detection and ranging (lidar) data and multibeam sonar data representing the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The LAS data were used to create a digital elevation model (DEM) of the approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected October 5-11, 2021. Methodology similar to Wagner, D.M., Lund, J.W.,...
thumbnail
This portion of the USGS data release presents sediment grain-size data from on the Elwha River delta, Washington in July and August, 2015 (USGS Field Activities 2015-648-FA and 2015-652-FA). Bed sediment was sampled using a small ponar, or 'grab', sampler on July 28, 2016 from the R/V Frontier at a total of 70 locations in water depths between approximately 1 and 17 m around the delta. An additional 17 samples were obtained by SCUBA divers between July 22 and August 23, 2015 using a 15 cm diameter push corer inserted into the seabed as far as possible to a maximum depth of 15 cm. Forty-eight samples were collected at low tide at intertidal locations on the delta. The locations of grab samples and intertidal samples...
thumbnail
This portion of the data release contains information on cores that were collected by the U.S. Geological Survey in Kahana Valley, O'ahu, Hawaii in 2015 and 2017. Sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These cores contain mud, peat, fluvial sands, and marine carbonate sands, reflecting deposition in a variety of coastal environments. PDF files describe twenty-four (24) gouge and ‘Russian’ cores (hand held, side-filling peat augers) that were collected and described in the field. Cores collected in 2017 were described using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson, 2015). Another pdf file (Kahana_cores_legend.pdf) contains...
thumbnail
This portion of the data release contains information on vibracores that were collected by the U.S. Geological Survey in Pololu Valley, Island of Hawai'i in 2014. Five sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These vibracores contain mud, peat, fluvial sands, and marine volcanic sands, reflecting deposition in a variety of coastal environments. Two (2) pdf files (VC1.pdf, VC2.pdf) describe vibracores that were split, imaged by a line-scanner camera, scanned to generate computed tomagraphic (CT) images, and visually described. A detailed description of the upper 150 cm of VC1 using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson,...
thumbnail
This part of the Oregon OCS data release presents marine mammal observations from cruise 2014-607-FA in the Floating Wind Farm survey area. The survey was conducted using 12 hour day operations out of Charleston Harbor near Coos Bay, Oregon. The cruise plan consisted of 23 days on site split between sonar mapping and video ground truth surveying. Activities parsed out to nine days of sonar mapping, three days of video surveying, eight days of no operations due to weather, and three days mobilizing and demobilizing (table 1). Typically the Snavely would transit out to the survey area in an hour at a speed of 20 knots. Marine Mammal observations were made during the multibeam sonar mapping portion of the cruise only....
thumbnail
These metadata describe ship navigation tracklines from a 2017 multibeam echosounder survey near Noyo Submarine Canyon and Dixon Entrance, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile.
thumbnail
Spatial surveys of water column physical properties were acquired with a conductivity-temperature-depth (CTD) profiler for four days in February 2015 and one day in July 2015 off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in northern Monterey Bay, California in March 2017 (USGS Field Activity Number 2017-620-FA). Bathymetry data were collected using two personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during the survey. Positioning of the survey vessels was was determined at 10-Hz using Trimble R7 GNSS receivers and Zephyr 2 antennas. Output from the GNSS receivers and sonar systems were combined in real time on the PWC by a computer running HYPACK hydrographic...
thumbnail
This polygon shapefile is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The polygons have attribute values for Coastal and Marine Ecological Classification Standard (CMECS) geoforms, substrate, and modifiers. CMECS is the U.S. government standard for marine habitat characterization and was developed by representatives from a consortium of federal agencies. The standard provides an ecologically relevant structure for biologic, geologic, chemical, and physical habitat attributes. This map illustrates the geoform and substrate components of the standard. The CMECS classes are documented at https://www.fgdc.gov/standards/projects/FGDC-standards-projects/cmecs-folder/CMECS_Version_06-2012_FINAL.pdf....
thumbnail
This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, and supplemented with geologic structure (fault and fold) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness...
thumbnail
This dataset consists of short-term (less than 37 years) shoreline change rates for the exposed coast of the north coast of Alaska from Icy Cape to Cape Prince of Wales. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.4, an ArcGIS extension developed by the U.S. Geological Survey. Rates of shoreline change were calculated using an end point rate-of-change (epr) method based on available shoreline data between 1980 and 2016. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate shoreline change rates.


map background search result map search result map Habitat--Offshore Santa Cruz, California Oregon OCS mammal observations Transgressive Contours--Pigeon Point to Monterey, California Surface-sediment grain-size distributions from the Elwha River delta, Washington, July 2015 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site Terrestrial lidar data from northern Monterey Bay, California, September 2015 Nearshore bathymetry data from northern Monterey Bay, California, March 2017 Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i Isopachs—Point Sur to Point Arguello, California Transgressive Contours—Point Sur to Point Arguello, California Ship navigation tracklines from a 2017 multibeam survey near Noyes Submarine Canyon, southeast Alaska Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales LAS dataset of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021) LAS dataset of lidar, single-beam, and multibeam data collected of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, October 2021 LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 LAS dataset of lidar, single-beam, and multibeam data collected of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, October 2021 Terrestrial lidar data from northern Monterey Bay, California, September 2015 LAS dataset of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Habitat--Offshore Santa Cruz, California Nearshore bathymetry data from northern Monterey Bay, California, March 2017 Oregon OCS mammal observations Ship navigation tracklines from a 2017 multibeam survey near Noyes Submarine Canyon, southeast Alaska Transgressive Contours--Pigeon Point to Monterey, California Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021) Isopachs—Point Sur to Point Arguello, California Transgressive Contours—Point Sur to Point Arguello, California Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Digital Shoreline Analysis System (DSAS) version 4.4 transects with short-term end-point rate-of-change calculations for the exposed north coast of Alaska, from Icy Cape to Cape Prince of Wales