Skip to main content
Advanced Search

Filters: Types: OGC WMS Service (X) > Tags: {"type":"Place","name":"united states"} (X) > Extensions: Project (X)

9 results (182ms)   

View Results as: JSON ATOM CSV
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
A limited amount of valid scientific information about global climate change and its detrimental impacts has reached the public and exerted a positive impact on the public policy process or future planning for adaptation and mitigation. This project was designed to address this limitation by bringing together expertise in the social and communication sciences from targeted academic institutions affiliated with the Department of the Interior’s Climate Science Centers (CSCs) through a workshop. The project team brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s CSCs, by means of an invited...
thumbnail
The climate of the North Central U.S. is driven by a combination of factors, including atmospheric circulation patterns, the region’s complex topography which extends from the High Rockies to the Great Plains, and variations in hydrology. Together, these factors determine the sustainability of the region’s ecosystems and the services that they provide communities. In order to understand the vulnerability of the region’s ecosystems to change, it is necessary to have reliable projections of future climate conditions. To address this need, researchers first examined past and present variations in climate and assessed the ability of climate models to effectively project future climate conditions for the region. Second,...
thumbnail
A number of large-scale mapping projects have been completed in the U.S., and several cover all or some parts of the footprint of the Northeast Climate Science Center (NE CSC). These include maps by the Southeast GAP Analysis (SEGAP) program, the national LANDFIRE program, NatureServe, and The Nature Conservancy. These mapping projects represent a major step forward in describing the current extent of ecosystems on the landscape, and provide resource management agencies and organizations with unprecedented access to spatial information on these systems. In a number of cases, the ranges of these maps overlap. As a result, staff of resource management agencies and organizations are faced with trying to determine how...
thumbnail
Tribal communities are especially vulnerable to the effects of climate change because of their reliance on the natural environment to sustain traditional activities and their limited resources to respond to climate change impacts. At the same time, tribes have valuable traditional knowledge that can aid regional efforts to address climate change. There were two overarching goals of this project: The first was to build partnerships between South Central Climate Science Center (SC CSC) researchers and tribal communities, linking tribes with climate change tools and resources and developing a model that could be replicated in other regions. The second goal was to document tribal viewpoints on climate change impacts...
thumbnail
In semi-arid regions, riparian and wetland ecosystems function as important migratory and breeding habitats and add significantly to local and regional biodiversity; however, these ecosystems are increasingly threatened by climate change and the potential synergistic effects of increasing demand for water and invasion by exotic species. As a continuation of our inaugural USGS National Climate Change and Wildlife Science Center (NCCWSC) project, this study examined the effects of climate and land use change on bird populations and their riparian and wetland habitats in the western US. Scientists at the USGS, academic institutions, and nongovernmental organizations (NGOs) examined the linkages between climate, hydrology,...
thumbnail
To date, hydrological and ecological models have been developed independently from each other, making their application particularly challenging for interdisciplinary studies. The objective of this project was to synthesize and evaluate prevailing hydrological and ecological models in the South-Central U.S., particularly the southern Great Plains region. This analysis aimed to identify the data requirements and suitability of each model to simulate stream flow while addressing associated changes in the ecology of stream systems, and to portray climate variability and uncertainty. The results and deliverables of this project are expected to include a comprehensive, updated, and systematic report on recent developments...
thumbnail
This study set out to answer the question: “What data and modeling frameworks are needed to provide scientists reliable, climate-informed, water temperature estimates for freshwater ecosystems that can assist watershed management decision making?” To accomplish this, the study gathered existing stream temperature data, identified data gaps, deployed stream temperature monitoring devices, and developed and tested a stream temperature model that could be regionalized across the Northeast domain. We partnered with another funded project team, led by Jana Stewart at WI USGS to collect data from over 10,000 locations across the climate science center domain. This collection effort aided in identifying data gaps where...
thumbnail
We routinely encounter uncertainty when we make decisions – from picking a new morning coffee to choosing where to live. Even decisions that are supported by science contain some level of remaining uncertainty. In the context of conservation and wildlife management, the potential for uncertainty to influence decisions is perhaps most obvious when we think about predicting how actions (or non-actions) will have lasting impacts into the future. Our abilities to precisely predict future climatic and ecological conditions and determine the exact consequences of our actions are, and will remain, limited. Conservation practitioners and land and wildlife managers must navigate these challenges to make science-informed...


    map background search result map search result map Understanding the Links Between Climate, Ecosystem Processes, Wetland Management, and Bird Communities in the Prairie Pothole Region of the Northern Great Plains Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Inter-Tribal Workshops on Climate Change in the Central U.S. Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Turning Uncertainty into Useful Information for Conservation Decisions Understanding Extreme Climate Events in the North Central U.S. Understanding the Links Between Climate, Ecosystem Processes, Wetland Management, and Bird Communities in the Prairie Pothole Region of the Northern Great Plains Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Building Capacity within the CSC Network to Effectively Deliver and Communicate Science to Resource Managers and Planners Analyzing and Communicating the Ability of Data and Models to Simulate Streamflow and Answer Resource Management Questions Inter-Tribal Workshops on Climate Change in the Central U.S. Understanding Extreme Climate Events in the North Central U.S. Bringing People, Data, and Models Together – Addressing Impacts of Climate Change on Stream Temperature Making Terrestrial and Wetland Habitat Maps Useful for Adaptation Planning Turning Uncertainty into Useful Information for Conservation Decisions