Skip to main content
Advanced Search

Filters: Types: Shapefile (X) > Tags: {"scheme":"none"} (X) > Types: Raster (X)

7 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This data release includes data collected from the Villa Grove helicopter magnetic survey in northern San Luis Valley and Poncha Pass region in south-central Colorado, USA. The survey area extends over the northern part of Great Sand Dunes National Park, Poncha Pass and vicinity, and into the southern end of the Upper Arkansas Valley. It includes the communities of Crestone, Villa Grove, Saguache, and Salida. Several U.S. Geological Survey programs (including the National Cooperative Geologic Mapping Program, Mineral Resources Program, and Geothermal Program), as well as the Colorado Geological Survey, funded the survey. The data are part of studies to help refine our knowledge in this area about the nature of aquifers,...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 2 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This publication provides digital flight line data for a high-resolution magnetic survey over an area of the central Upper Peninsula of Michigan. The survey area lies approximately between the towns of Iron Mountain and Chatham. Data for this survey were collected by EON Geosciences under contract with the USGS using a fixed wing aircraft with a magnetometer mounted in the tail stinger. The survey operated out of the Sawyer International Airport near Marquette, Michigan, from June of 2018 to September of 2018. A total of 38,474 line km of data were collected. Data were collected along north-south flight lines spaced 150 meters apart with east-west tie lines flown every 1,500 meters. The nominal terrain clearance...


    map background search result map search result map Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years High Resolution Aeromagnetic Survey, Villa Grove, Colorado, USA, 2011 Airborne magnetic survey, Iron Mountain-Chatham region, central Upper Peninsula, Michigan, 2018 High Resolution Aeromagnetic Survey, Villa Grove, Colorado, USA, 2011 Airborne magnetic survey, Iron Mountain-Chatham region, central Upper Peninsula, Michigan, 2018 Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years