Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Tags: {"type":"LCC End User Type","name":"federal resource managers"} (X) > Extensions: ArcGIS Service Definition (X) > Types: OGC WFS Layer (X)

44 results (28ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=LCC End User Type )
View Results as: JSON ATOM CSV
thumbnail
The Desert Landscape Conservation Cooperative Land Cover Map shows land cover at a regional scale (1:2,500,000). The files provided are graphic design files that can be used to plot a publication-quality, poster-size map.Scale: 1:2,500,000 Map poster dimensions: 34 x 44 inches Data sources:Land cover from North American Environmental Atlas by the Commission for Environmental Cooperation, 2010. Physiographic regions from Natural Earth 1:10 million scale Physical Labels (3.0.0) derived from Patterson’s Physical Map of the World, 2008. Hydrography, populated places, and political boundaries from National Atlas of the United States, 2004. File descriptions: DLCC_LandCover.ai is an Adobe Illustrator file. DLCC_LandCover.pdf...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Conservation NGOs, DATA ANALYSIS AND VISUALIZATION, Data, Data.gov Desert Landscape Conservation Cooperative, All tags...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
thumbnail
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
thumbnail
These layers show land ownership and status of all Canadian and U.S. lands that fall within the boundaries of the Great Northern Landscae Conservation Cooperative. Layers were compiled from various sources, each with it’s own metadata reference file.
thumbnail
This dataset features suitable habitat at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled along the intersection...
thumbnail
Desert Landscape Conservation Cooperative Boundary delineates the spatial extent of the DLCC. The vector boundary is available as both a shapefile and KML file. This is a derivative product of the LCCs shapefile produced by the U.S. Fish and Wildlife Service, accessed from http:/http://www.fws.gov/GIS/data/national/ in 2014.To access the KML file, click on the ScienceBase URL and then select Open in Google Earth (KML). To access the shapefile (FWS_LCC_DLCC.shp), click on FWS_LCC_DLCC.zip linked from this product profile.
thumbnail
This project will conduct a synthesis of marine spatial data. An OPS staff will be hired to work with marine/coastal experts – to develop a Technical Advisory Group and gather data and input on the processes used in the marine assessment. Additionally, this project will identify key inland (terrestrial and freshwater) areas that currently have or may have in the future direct and indirect impacts on the health of the marine environment. Results of this project will be the basis for the marine component of the Landscape Conservation Design being developed by the Peninsular Florida Landscape Conservation Cooperative. Every effort will be made to build upon existing science and other ongoing projects that may be developing...
thumbnail
This dataset features inundated areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. To model river stage specific inundation for the upper section, discharge for each Landsat 8 overpass date was entered as the upstream condition and the corresponding...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This dataset features suitable habitat connected to the main channel (based on floodplain inundation) within managed areas at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This dataset features suitable depth (0.2 m ≤ depth ≤ 2.0 m) at discharges from 15,000 cfs to 100,000 cfs. The spatial extent for floodplain inundation modeling in the lower Trinity River was from Romayor, Texas, to approximately Moss Bluff, Texas. River sections were modeled using steady flow conditions. For the upper section, discharge and stage were both available for the two gages (Romayor USGS 08066500 and Liberty USGS 08067000). For the lower section, the Moss Bluff gage (USGS 08067100) is tidally-influenced, so gage height didn’t correspond to upstream changes in discharge. Depth rasters were exported from HEC-RAS 5.0.0. Since the lower section had large over- and underestimates, depth values were sampled...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
The model was acquired from Tyler Wagner (U.S. Geological Survey) (DeWeber & Wagner, 2014). Model outputs were composed of Ecological Drainage Units (EDUs), each of which was assigned a resulting mean predicted occurrence probability. The study region was determined by the Eastern Brook Trout Joint Venture (EBTJV) and represents the native range of the species on the East Coast. The polygons of interest were derived from the NHD plus dataset, with local catchments located at least 90% within the study region boundary. Presence data was taken from fish sampling records collected from state agencies and the Multistage Aquatic Resources Information System (MARIS), and these points were joined to the nearest stream...
thumbnail
Hellbender presence data was acquired from NatureServe and limited to points dating from 1980 to the present, with individual points adapted from the available data. Geospatial data was acquired from the U.S. Geological Survey’s National Land Cover Database (NLCD) and the Horizon Systems Corporation National Hydrography Dataset (NHD) Version 2. The study was conducted over the extent of the Appalachian LCC. Environmental variables of consideration were determined through literature review and expert advice on the species (Personal correspondence, Quinn, 2009). Hellbender presence data was sub-sampled to reduce spatial bias. Pseudo-absence points were also calculated to be within 1 km of the position of the presence...
thumbnail
Priority and use segments for Sandhill Cranes (Antigone canadensis). Segments designated as use areas were utilized during annual spring surveys 2014-2016. Priority areas were determined using statistical modeling. The reduced model that best predicted use by Sandhill cranes included total area of trees, pits, crops and unvegetated sandbar habitats in each segments. Mean distance to conservation lands and roads and minimum distance to transmission lines and towers were also included in the model. Only distance to lines and total tree area had a significant (p < 0.05) relationship with priority core segments.


map background search result map search result map Boundary Dataset Land Cover Map GNLCC Jurisdictional Boundaries Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Brook Trout Highly Suitable Habitat with the Appalachian Landscape Conservation Cooperative Eastern Hellbender Suitable Habitat Percent catchment under crop-rivers Amount of inflow stored in upstream dams-rivers ALI Priority areas as linear networks (Figure 12) Selection frequency score Figure(6) Sandhill Crane Priority Use Cores Marine Priority Resources Map River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable connected habitat for Alligator Gar spawning within managed areas in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable habitat for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting suitable depth for Alligator Gar spawning in the lower Trinity River of Texas River stage-specific GIS data layers depicting floodplain inundation in the lower Trinity River of Texas Sandhill Crane Priority Use Cores ALI Priority areas as linear networks (Figure 12) Selection frequency score Figure(6) Marine Priority Resources Map Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Percent catchment under crop-rivers Amount of inflow stored in upstream dams-rivers Eastern Hellbender Suitable Habitat Brook Trout Highly Suitable Habitat with the Appalachian Landscape Conservation Cooperative Boundary Dataset Land Cover Map GNLCC Jurisdictional Boundaries