Skip to main content
Advanced Search

Filters: System Type: Data Release (X) > Categories: NOT Data Release - In Progress (X) > Tags: {"type":"CMS Topics"} (X) > Date Range: {"choice":"year"} (X) > Extensions: Shapefile (X)

8 results (13ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains cyanotoxin, chlorophyll-a, and pheophytin-a concentration, cyanobacterial genetics, phytoplankton community composition, and multiparameter sonde data collected from 20 sites in five northeastern United States river basins (Penobscot (ME), Santuit (MA), York (VA-WV), Salem (NJ), and Peconic (NY)). Solid Phase Adsorption Toxin Tracking (SPATT) passive samplers were deployed at all sites between August 31 and September 2, 2020, and retrieved after 7 days. Discrete water samples were collected when SPATTs were deployed, and at 2 sites (USGS station IDs 01670257, 0167014792), samples were also collected when the SPATTs were recovered. Sonde data were collected when deploying and retrieving...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Anatoxin-a, Aquatic Community Health, Chlorophyll-a, Contaminants, HABS, Cyanobacteria, All tags...
thumbnail
This data release contains three data types that could potentially be used to infer spatiotemporal variability in groundwater discharge processes, along with other research and monitoring purposes: 1) Temporally continuous stream channel water temperature and adjacent streambank air temperature time series data (generally starting November 2020) as well as limited temperature data from May to October 2022 from select seeps and springs; 2) Discrete stable isotope data collected from stream water (May 2021, October/November 2021, May 2022, October/November 2022); and 3) Discrete dissolved radon gas data from stream water (collected May 2021 and May 2022). Data were collected at 51 temporary stations installed along...
thumbnail
This document provides a summary of surface water-quality, streamflow, and groundwater data collected by the U.S. Geological Survey (USGS) within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven under a five-year comprehensive water resources monitoring program. The surface water-quality data within the CPB for the 2018 water year (October 1, 2017 to September 30, 2018) includes data from the Carmans River and the Peconic River. The streams were sampled several times throughout the year at seven pre-determined locations. The Carmans River was sampled at five locations: 1) CARMANS RIVER AT...
thumbnail
This data release contains data from five seismic-reflection surveys in New York’s East River between Governors Island and the Queensboro Bridge. Data are provided in the original proprietary data format, a SEGy data exchange format, and as a shape file of locations and depths to bedrock. Depths to bedrock were derived from the seismic signal travel time and an assumed speed of sound of 5,000 feet/second.
thumbnail
This data release documents streambed sediment thickness in the Neversink watershed (NY) as determined by field observations and HVSR passive seismic measurements, and were collected as an extension of a previous data set collected in the same watershed (see Associated Items). These measurements were made between May 17, 2021 and May 21, 2021 using MOHO Tromino three-component seismometers (MOHO, S.R.L.). Seismic observations were converted to sediment thickness (depth to bedrock, meters) using the horizontal-to-vertical spectral ratio (HVSR) method. Resonance frequencies were determined from time domain data using GRILLA (MOHO, S.R.L.) software and converted to inferred depth to bedrock for a range of possible...
thumbnail
This data release contains results of a high-water mark survey across Upstate New York following flash flooding during July 9-10, 2023. The survey was conducted between July 12 and September 20, 2023 by U.S. Geological Survey (USGS) personnel, and is based on surveyed elevations of mud, debris, and seed lines (Koenig and others, 2016) left by the flooding. Real-time and static Global Navigation Satellite System (GNSS) surveying (Rydlund and Densmore, 2012), combined with differential leveling (Kenney, 2010), were used to determine high-water mark elevations at 186 locations. Additional data associated with the July 2023 flooding, such as photos of the survey locations, can be found in the USGS Flood Event Viewer,...
thumbnail
From March 2019 to September 2020, the U.S. Geological Survey, in cooperation with the New York City Department of Design and Construction and the New York State Department of Environmental Conservation, collected horizontal-to-vertical seismic (HVSR) surveys at 140 locations in New York, Bronx, Queens, Nassau, and Suffolk counties to estimate the thickness of unconsolidated sediments and the depth to bedrock (Lane and others, 2008). The passive-seismic method uses a single, broad-band three-component (two horizontal and one vertical) seismometer to record ambient seismic noise. In areas that have a strong acoustic contrast between the bedrock and overlying sediments, the seismic noise induces resonance at frequencies...
thumbnail
In 2016, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, collected horizontal-to-vertical seismic soundings at 31 locations in the Owasco Inlet valley, Cayuga and Tompkins Counties, New York to help determine thickness of the unconsolidated deposits. The HVSR technique, commonly referred to as the passive-seismic method, is used to estimate the thickness of unconsolidated sediments and the depth to bedrock (Lane and others, 2008; Fairchild and others, 2013). The passive-seismic method uses a single, broad-band three-component (two horizontal and one vertical) seismometer to record ambient seismic noise. In areas that have a strong acoustic contrast between...


    map background search result map search result map 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Horizontal-to-Vertical Spectral Ratio (HVSR) Soundings and Depth-to-Bedrock Data for the Owasco Inlet Watershed, Cayuga and Tompkins Counties, New York 2016 Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for New York City and Long Island, NY Continuous Marine Seismic-Reflection Surveys and Derived Depth-to-Bedrock Point Data from the East River, New York City, New York Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) Cyanobacteria, Cyanotoxin, Cyanotoxin Synthetase Gene, and other Water-Quality Data Collected from Five River Basins in the North Atlantic Appalachian Region, August through September, 2020 High-Water Mark Elevations in Upstate New York from Flash Flooding during July 9-10, 2023 Continuous Marine Seismic-Reflection Surveys and Derived Depth-to-Bedrock Point Data from the East River, New York City, New York Stream Temperature, Dissolved Radon, and Stable Water Isotope Data Collected along Headwater Streams in the Upper Neversink River Watershed, NY, USA (ver. 2.0, April 2023) Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) Horizontal-to-Vertical Spectral Ratio (HVSR) Soundings and Depth-to-Bedrock Data for the Owasco Inlet Watershed, Cayuga and Tompkins Counties, New York 2016 2018 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for New York City and Long Island, NY High-Water Mark Elevations in Upstate New York from Flash Flooding during July 9-10, 2023 Cyanobacteria, Cyanotoxin, Cyanotoxin Synthetase Gene, and other Water-Quality Data Collected from Five River Basins in the North Atlantic Appalachian Region, August through September, 2020