Skip to main content
Advanced Search

Filters: Tags: {"scheme":"Common geographic areas"} (X) > partyWithName: Ecosystems (X) > Types: Map Service (X) > Extensions: ArcGIS Service Definition (X)

16 results (183ms)   

View Results as: JSON ATOM CSV
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (6912 points, collected across public and private land in 2018), Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (June 2018), a 1 m lidar DEM from September 2018, and a 1 m canopy surface model were used to generate models of predicted bias across the...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA...
thumbnail
This dataset provides information on the current status and various other habitat and descriptive attributes of the native coastal vegetation for seven of the main Hawaiian Islands (i.e., does not include Ni`ihau).
thumbnail
This feature estimates the geographic extent of the sagebrush biome in the United States. It was created for the Western Association of Fish and Wildlife Agency’s (WAFWA) Sagebrush Conservation Strategy publication as a visual for the schematic figures. This layer does not represent the realized distribution of sagebrush and should not be used to summarize statistics about the distribution or precise location of sagebrush across the landscape. This layer is intended to generalize the sagebrush biome distribution using Landsat derived classified vegetation rasters (Rigge at al. 2019), Bureau of Land Management-designated Habitat Management Areas, state-designated Priority Areas for Conservation for sage-grouse, the...
thumbnail
These data depict reptile species richness within the range of the Greater Sage-grouse. Species boundaries were defined as the total extent of a species geographic limits. This raster largely used species range data from "U.S. Geological Survey - Gap Analysis Project Species Range Maps CONUS_2001", however in order for a more complete picture of species richness, additional sources were used for species missing from the Gap Analysis program.
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
The data are .csv files of tagged sea otter re-sighting locations (henceforth, resights) collected in the field using a combination of VHF radio telemetry and direct observation using high powered (80x) telescopes. Sea otters were tracked by shore based observers from the date of tagging until the time of radio battery failure or the animal’s death, whichever comes first. The frequency of re-sighting was opportunistic, depending on logistical factors such as coastal access, but generally ranged from daily to weekly. Location coordinates are reported as X and Y coordinates in the projection/datum California Teale-Albers NAD 1927. Each file contains resight data for one individual sea otter collected over a period...
thumbnail
***This data set is superseded by Welty, J.L., and Jeffries, M.I., 2021, Combined wildland fire datasets for the United States and certain territories, 1800s-Present: U.S. Geological Survey data release, https://doi.org/10.5066/P9ZXGFY3.*** This dataset is comprised of four different zip files. Zip File 1: A combined wildfire polygon dataset ranging in years from 1878-2019 (142 years) that was created by merging and dissolving fire information from 12 different original wildfire datasets to create one of the most comprehensive wildfire datasets available. Attributes describing fires that were reported in the various source data, including fire name, fire code, ignition date, controlled date, containment date, and...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding Blackwater National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image...
thumbnail
Heat load, a unitless value from 0 (low incident radiation) to around 1 (high incident radiation), is calculated using aspect, slope, and latitude (McCune and Dylan 2002). For the purposes of the exploration tool, the data are binned into 6 classes using Geometric Interval. Classes range from very low to very high and are designed to allow the classification of a polygon into its heat load types. McCune, B. and Keon, D., 2002, Equations for potential annual direct incident radiation and heat load: Journal of Vegetation Science, v. 13, no. 4, p. 603-606, https://doi.org/10.1111/j.1654-1103.2002.tb02087.x.
thumbnail
"Vector Ruggedness Measure (VRM) measures terrain ruggedness as the variation in three-dimensional orientation of grid cells within a neighborhood. Vector analysis is used to calculate the dispersion of vectors normal (orthogonal) to grid cells within the specified neighborhood. This method effectively captures variability in slope and aspect into a single measure. Ruggedness values in the output raster can range from 0 (no terrain variation) to 1 (complete terrain variation). Typical values for natural terrains range between 0 and about 0.4. VRM was adapted from a method first proposed by Hobson (1972). VRM appears to decouple terrain ruggedness from slope better than current ruggedness indices, such as TRI or...
This data release includes 2022 data for the Louisiana Outer Coast Restoration Project for North Breton Island. Specifically, this data release includes a detailed habitat map, general habitat map, georeferenced imagery, and a bare-earth digital elevation model (DEM) developed from light detection and ranging data. These habitat maps are developed using the methods and classification scheme from Louisiana Coastal Protection and Restoration Authority’s (CPRA) Barrier Island Comprehensive Monitoring (BICM) program. For more details on BICM habitat classes, see the Entity and Attribute Information section of the metadata. Please consult the accompanying readME.txt file for information and recommendations on the contents...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Delta Management at Fort St. Philip (BS-11) project for 2021. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their...
thumbnail
This raster portrays the distribution of sagebrush within the geographic extent of the sagebrush biome in the United States. It was created for the Western Association of Fish and Wildlife Agency’s (WAFWA) Sagebrush Conservation Strategy publication as a visual for the schematic figures and to calculate summary statistics. This distribution incorporates the most recently available sagebrush cover mapping (Xian et al. 2015, Rigge et al. 2019) and classified LANDFIRE EVT (Department of Ecosystem Science, University of Wyoming 2016). Both datasets were rigorously evaluated and extensive ground measurements taken to evaluate accuracy by the respective authors. We created a combined binary sagebrush distribution by classifying...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding the Eastern Neck National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for area surrounding the Martin National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (2013)...