Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Keyword"} (X) > partyWithName: California Landscape Conservation Cooperative (X) > partyWithName: California Department of Fish and Wildlife (X)

6 results (29ms)   

View Results as: JSON ATOM CSV
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
This project used species distribution modeling, population genetics, and geospatial analysis of historical vs. modern vertebrate populations to identify climate change refugia and population connectivity across the Sierra Nevada. It is hypothesized that climate change refugia will increase persistence and stability of populations and, as a result, maintain higher genetic diversity. This work helps managers assess the need to include connectivity and refugia in climate change adaptation strategies. Results help Sierra Nevada land managers allocate limited resources, aid future scenario assessment at landscape scales, and develop a performance measure for assessing resilience.
Categories: Data, Project; Tags: 2011, 2013, CA, California Landscape Conservation Cooperative, Conservation Design, All tags...
California’s native fishes are mostly endemic, with no place to go as climate change increases water temperatures and alters stream flows. Many of the alien fishes, however, are likely to benefit from the effects of climate change. The goal of this project is to synthesize life history traits, population trends, status, and threats, including climate change, for all fishes in the state. We have found that 25% of the endemic fishes are now in danger of extinction. Climate change in conjunction with alien species, agriculture, and dams pose the greatest threat to native fishes. Preliminary results from two regional analyses suggest that native fishes in the Sierra Nevada are slightly less (74%) vulnerable to climate...
This project developed a foundation for monitoring environmental change by identifying where and what to monitor in order to evaluate climate-change impacts. Phase 1 focused on landbirds, however a framework will be developed that recommends standardized monitoring for other taxa and environmental attributes. Phase II Deliverables produced as part of this proposed work include a Business Plan that 1) refines site selection by developing a decision model in combination with analyses of sites (or clusters of sites) arrayed by climate space, 2) works with the LCC science committee, Joint Ventures, and other partners to choose a manageable number of core monitoring variables, 3) develops and/or adopting existing protocols...
To be successful, natural resource managers need to synthesize diverse information on the effects of management actions, climate change and other stressors on wildlife populations at appropriate scales. The project team developed a Decision Support Tool (DST) that integrates the results of multi-disciplinary, multi-taxa modeling allowing users to project outcomes of conservation actions, accounting for effects of climate change and other stressors. This DST builds on work to improve a sea level rise tool for adaptive tidal wetland restoration and management. The DST provides information on how restoration can increase population resilience and long-term persistence at multiple scales for multiple species throughout...