Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/ScienceThemes"} (X) > Categories: Publication (X) > partyWithName: Daniel R Cayan (X) > partyWithName: Southwest CSC (X)

8 results (110ms)   

View Results as: JSON ATOM CSV
Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change...
A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May–September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0082.1): A new technique for statistically downscaling climate model simulations of daily temperature and precipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0167.1): Annual precipitation in California is more variable than in any other state and is highly influenced by precipitation in winter months. A primary question among stakeholders is whether low precipitation in certain months is a harbinger of annual drought in California. Historical precipitation data from 1895 to 2013 are investigated to identify leading monthly indicators of annual drought in each of the seven climate divisions (CDs) as well as statewide. For this study, drought conditions are defined as monthly/annual (October–September) precipitation below the 20th/30th percentile, and a leading indicator is defined as a monthly drought...
Abstract (from Springer): Analyses of observed non-Gaussian daily minimum and maximum temperature probability distribution functions (PDFs) in the Southwest US highlight the importance of variance and warm tail length in determining future heat wave probability. Even if no PDF shape change occurs with climate change, locations with shorter warm tails and/or smaller variance will see a greater increase in heat wave probability, defined as exceedances above the historical 95th percentile threshold, than will long tailed/larger variance distributions. Projections from ten downscaled CMIP5 models show important geospatial differences in the amount of warming expected for a location. However, changes in heat wave probability...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-13-00126.1): We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled...
Abstract (from http://link.springer.com/article/10.1007/s00382-015-2845-1): Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health...