Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/SWCSC/States","name":"multiple"} (X)

8 results (488ms)   

View Results as: JSON ATOM CSV
thumbnail
The goals of this project were to: (1) produce a state-of-the-art assessment and synthesis of climate change projections, impacts, vulnerabilities, adaptive capacity, and prospects for mitigation and adaptation actions in the Southwest in support of the regional contribution to the National Climate Assessment; (2) develop an inventory of federal partners and stakeholders involved with climate adaptation programs, and (3) forge stronger bonds between the DOI-SW CSC, the three NOAA-RISAs in the Southwest, and the Landscape Conservation Cooperatives.
thumbnail
The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s water supply is already fully allocated, meaning that the economic and environmental health of the region is closely tied to the river’s streamflow. Climate projections for the Southwest show a future marked by chronic drought and substantial reductions in streamflow. The region has already been impacted by climate change,...
thumbnail
To understand potential climate change impacts on ecosystems, water resources, and numerous other natural and managed resources, climate change data and projections must be downscaled from coarse global climate models to much finer resolutions and more applicable formats. This project conducted comparative analyses to better understand the accuracy and properties of these downscaled climate simulations and climate-change projections. Interpretation, guidance and evaluation, including measures of uncertainties, strengths and weaknesses of the different methodologies for each simulation, can enable potential users with the necessary information to select and apply the models.
thumbnail
Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel fires. This project sought to assess the vulnerability of forests in the southwestern U.S. to climate change and wildfire, in order to understand how these ecosystems might become altered as a result. Researchers (a) examined how climate change impacts wildfires in the region, to better understand fire risk; (b) identified...
thumbnail
Few evaluations of actual collaborative science or co-production processes have been undertaken that can point to specific outcomes for either resource management or science decisions. Project researchers will assess a sample of collaborative Southwest Climate Science Center (SW CSC) funded research projects in order to evaluate the approaches used by SW CSC investigators to collaborate with agency managers and stakeholders; assess the management outcomes of these collaborative processes; develop a tentative set of metrics to measure the effect of these collaborations on management outcomes and the research process; and distill a set of best practices that improve both management and collaborative research process-related...
thumbnail
Biodiversity is declining worldwide, and this trend could potentially become more severe as climate conditions change. An integral component of proactive adaptive management planning requires forecasts of how changes in climate will affect individual species. This need has been identified my multiple federal agencies, including the U.S. Fish and Wildlife Service, National Park Service, Bureau of Land Management, and U.S. Forest Service. The goal of this project was to assist land and wildlife managers in anticipating which species are most vulnerable to changes in climate in the Southwest, and how resources can best be invested to facilitate adaptation. Researchers evaluated the current and future breeding ranges...
thumbnail
Changing climate conditions have been identified as a major threat to the sustainability and availability of water resources in the Southwestern U.S. Long-term decreases in precipitation can lead to reductions in regional groundwater levels and loss of groundwater storage in aquifers for some communities. Reduced precipitation can also lead to lower water levels in streams and losses in the vegetation that grows alongside riverbanks. The goal of this project was to identify how hydrologic systems in the Southwest might respond to changes in climate and the degree to which this response is dependent on the characteristics of the hydrologic system. To do this, researchers developed a tool that simulates how quickly...
thumbnail
In the Southwestern U.S., rising temperatures and changing precipitation patterns are resulting in changes such as more frequent and severe wildfires and prolonged drought. Natural resource managers striving to make decisions in the face of these changing conditions can benefit from information on past, present, and future climate. While an array of climate assessments are available, it is unclear how useful or relevant this information is for resource management decision-making in the Southwest. This project sought to identify the types of environmental information that resource managers in the Southwest need to make climate-related management decisions. To meet this goal, researchers first assessed the degree...