Skip to main content
Advanced Search

Filters: Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/WRET/CMS_Themes/Powell_CMS_Themes","name":"ecosystems"} (X) > partyWithName: Jayne Belnap (X)

3 results (40ms)   

View Results as: JSON ATOM CSV
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Drylands are integral to the Earth system and the present and future of human society. Drylands encompass more than 40% of the terrestrial landmass and support 34% of the world’s human population. Biocrusts are the “living skin” of Earth’s drylands, sometimes dominating the ground cover and figuring prominently in ecosystem structure and function. Biocrusts are a biological aggregate of cyanobacteria, fungi, algae, lichens and mosses in the surface millimeters of soil. By aggregating soil, biocrusts make sediment less erodible. They also strongly influence the water runoff-infiltration balance. In some ecosystems they generate runoff, whereas in other systems they enhance water capture. Vascular plant germination,...
thumbnail
The impacts of nitrogen (N) deposition on plant diversity loss have been well documented across N deposition gradients in Europe, but much less so in the U.S. Published N fertilizer studies suggest losses will occur in the US, but many of these were done at levels of N input that were higher than modeled and measured N deposition, and higher than presumed N critical loads. The recent availability of modeled N deposition across the U.S. (e.g. using CMAQ) has provided a high‐resolution tool to identify regions where steep N deposition gradients facilitate detection of ecological shifts. A number of plant diversity (richness plus abundance) data sets across the U.S. have explained diversity shifts based on anthropogenic...