Skip to main content
Advanced Search

Filters: Tags: {"type":"Harvest Set"} (X) > Types: OGC WFS Layer (X) > partyWithName: Natural Hazards (X) > Types: OGC WMS Layer (X)

188 results (20ms)   

View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
New Zealand’s Alpine Fault (AF) ruptures quasi-periodically in large-magnitude earthquakes. Paleoseismological evidence suggests that about half of all recognized AF earthquakes terminated at the boundary between the Central and South Westland sections of the fault. There, fault geometry and the polarity of uplift change. The South Westland AF exhibits oblique-normal fault motion on a structure oriented 055/82SE that, for at least 35 km along strike, contains saponite-rich principal slip zone gouges. New hydrothermal friction experiments reveal that the saponite fault gouge is frictionally weak, exhibiting friction coefficients between =0.12 and =0.16 for a range of temperatures (T=25–210 C) and effective normal...
thumbnail
This release presents volcanic gas monitoring data from periodic surveys and temporary instrument deployments at Newberry Volcano, Oregon. Measurements of plume-gas and ambient air compositions were obtained using single-gas industrial hydrogen sulfide (H2S) sensors and with multi-GAS (multiple Gas Analyzer System; Aiuppa et al., 2005; Shinohara, 2005; Lewicki et al., 2017) instruments that measure water vapor (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), and H2S abundances. Discrete multi-GAS surveys were completed in 2017 at East Lake hot springs and Paulina hot springs. In response to reports of anomalous degassing in the summer of 2020 more extensive discrete multi-GAS surveys were completed around Newberry...
thumbnail
Near-surface site characteristics are critical for accurately modeling ground motion, which in turn influences seismic hazard analysis and design of critical infrastructure. Currently, there are many strong motion accelerometers within the Advanced National Seismic System (ANSS) that are missing this information. We use a Geographic Information Systems (GIS) based framework to intersect the site coordinates of approximately 5,500 ANSS accelerometers located throughout the United States and its territories with geology and velocity information. We consider: (1) surficial geology from digitized geologic maps (Horton, 2017; Wilson et al., 2015; Sherrod et al., 2007; Bawiec, 1999; Saucedo, 2005; Bedrossian et al., 2012;...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ANSS, Alabama, American Samoa, Arizona, Arkansas, All tags...
thumbnail
This data release supports interpretations of field-observed root distributions within a shallow landslide headscarp (CB1) located below Mettman Ridge within the Oregon Coast Range, approximately 15 km northeast of Coos Bay, Oregon, USA. (Schmidt_2021_CB1_topo_far.png and Schmidt_2021_CB1_topo_close.png). Root species, diameter (greater than or equal to 1 mm), general orientation relative to the slide scarp, and depth below ground surface were characterized immediately following landsliding in response to large-magnitude precipitation in November 1996 which triggered thousands of landslides within the area (Montgomery and others, 2009). The enclosed data includes: (1) tests of root-thread failure as a function of...
thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
The 2018 lower East Rift Zone eruption and accompanying summit collapse of Kīlauea Volcano, Hawaiʻi, comprised one of the most impactful events on the volcano in the past 200 years, with hundreds of homes destroyed and major changes in the topography of the summit caldera. The opening stages of this eruptive sequence started on 30 April, when a magmatic dike began moving east from Puʻuʻōʻō, a cone with a central crater that was the vent region for Kīlauea’s 35-year middle East Rift Zone eruption starting in 1983. The rapid migration of magma from beneath Puʻuʻōʻō caused its crater floor to drop over 300 m. This data release includes a three-dimensional model of Puʻuʻōʻō and the collapse crater, constructed...
This data release includes 2016-2019 soil moisture timeseries for two drainage basins (“Arroyo Seco” and “Dunsmore Canyon”) that burned during the 2009 Station Fire in Los Angeles County, California, USA. The Arroyo Seco (0.01 km2) and Dunsmore Canyon (0.5 km2) drainages include two soil pits, one located near the drainage divide and another near the basin outlet. Following the naming convention established by Smith et al. (2019), we refer to the soil pits near the Arroyo Seco drainage divide and basin outlet as “AS1” and “AS3,” respectively. Similarly, we refer to the soil pits near the Dunsmore Canyon drainage divide and basin outlet as “DC1” and “DC3,” respectively. The coordinates of AS1 and AS3 are, respectively,...
thumbnail
This data release contains field data for two P-wave seismic reflection profiles acquired across the Warm Springs Valley fault zone, part of the Northern Walker Lane, NV. The dataset consists of high-resolution seismic reflection field records in .segy format, shot coordinates in .csv format, and observers’ logs in .pdf format. The high-resolution seismic profiles are approximately 4 km long. The northern profile (Warm Springs Line 1) is oblique to a prominent fault bounded ridge. The southern profile (Warm Springs Line 2) crosses the northern end of Warm Springs Valley and is nearly co-located with COCORP profile NV-08. To obtain the seismic profiles, we used a 230 kg accelerated weight drop source and a nominal...
thumbnail
During 2018, Kīlauea Volcano, on the Island of Hawaiʻi, had a large effusive eruption (~1 cubic kilometer of lava) on the lower East Rift Zone that caused widespread destruction (Neal and others, 2019; Dietterich and others, 2021). This lower flank eruption was accompanied by one of the largest collapses of the summit caldera in two hundred years, with portions of the caldera floor subsiding more than 500 m (Anderson and others, 2019; Neal and others, 2019). On July 25, 2019, approximately one year after the summit collapse sequence, a small pond of water was first observed in the deepest portion of the collapse pit, within Halemaʻumaʻu crater (Nadeau and others, 2020). The water level rose gradually over the...
thumbnail
This dataset comprises a vector shapefile of the Puerto Rico geologic map from Bawiec et al. (1999), clipped to study areas in the Lares, Utuado, and Naranjito municipalities, with a modified basal contact of the Tertiary Lares Limestone (Tla) re-mapped using a lidar-derived digital elevation model (DEM) (USGS, 2018). The limestone unit of interest forms a prominent break in slope with the underlying geologic units, and this break in slope was mapped as the Tla basal contact. Only the southern contact of the Tla unit was modified. References: Bawiec, W.J., ed., 1999, Geology, geochemistry, geophysics, mineral occurrences and mineral resource assessment for the Commonwealth of Puerto Rico: U.S. Geological Survey...
thumbnail
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021. For higher precision and better resolution in the model, the data were supplemented with seismicity from southern California that was relocated by Hauksson and others (2012). Along the San Andreas Fault, the deepest seismogenic depths are located at 23 km around the Cholame segment, whereas the shallowest depths...
thumbnail
This data release contains results of model simulations of a plume at Kilauea volcano that occurred on 20 December 2020. The ash-poor plume was produced when lava flowed into a water lake at the summit of Kilauea volcano. Simulations were conducted to constrain the conditions under which the plume rose to its observed height. The analysis and results are described in the accompanying paper: Cahalan RC, Mastin L, Van Eaton A, Hurwitz S, Smith AB, Dufek J, Solovitz SA, Patrick M, Schmith J, Parcheta C, Thelen W, Downs DT (2023 (in press)) Dynamics of the December 2020 ash-poor plume formed by lava-water interaction at the summit of Kīlauea Volcano, Hawaiʻi. Geochemistry, Geophysics, Geosystems.
thumbnail
The files consist of two types: tabulated data files and graphical map files. Data files consist of six .csv files, representing six experiment dates (2016_06_14, 2016_16_15, 2016_18_15, 2016_16_21, 2016_16_22, 2016_16_23). Each of these files contains multiple columns of data, with each column representing either a time measurement or the value of a physical quantity measured at that time (e.g., flow depth, pore pressure, normal stress, etc.). Map files consist of six .pdf files, each representing an experiment date listed above. The maps show the thickness of the sediment deposited onto the runout pad after each experiment. Sediment thickness was determined using photogrammetery software from Adam Technology.
thumbnail
Lidar data was collected on 24 and 25 May 2017 at the USGS debris-flow flume to monitor two gate-release debris flow experiments. A static prism of sediment was emplaced behind a gate at the top of the flume. Water was added via sprinklers to the surface and also via pipes to the subsurface, in order to saturate the sediment mass. The sediment mass moved down the flume as a debris flow when the gate was opened. Lidar data were collected from a Riegl VZ-400 terrestrial laser scanner to capture the mass failure. The laser scanner was modified, so that rather than scanning in a 360 degree motion, as it is designed, it only scanned a narrow swath (approximately 1 mm) along the full profile of the constructed sediment...
thumbnail
Here we present an inventory of remotely and field-observed landslides triggered by 2019-2020 Puerto Rico earthquake sequence. The inventory was mapped using pre- and post-event satellite imagery (PR_landslide_inventory_imagery.csv), an extensive collection of field observations (https://doi.org/10.5066/P96QNFMB) and using pre-earthquake lidar as guidance for mapping polygons with more precise locations and geometries (2015 - 2017 USGS Lidar DEM: Puerto Rico dataset). The inventory consists of a shapefile of 309 polygons (PR_landslide_inventory_pts.shp) outlining the source area and deposits together. It also includes a point inventory (PR_landslide_inventory_pts.shp) marking 170 individual displaced boulders that...
thumbnail
These data are a series of telecommunications voice and data restoration percentages for 17 counties affected by the HayWired earthquake scenario, a magnitude 7.0 earthquake occurring on the Hayward Fault on April 18, 2018, with an epicenter in the city of Oakland, CA. These data for telecommunications demand served are derived from residual network capacity based on potential hazard information (for example, ground shaking and liquefaction), assumptions about dependence on electric power restoration, and assumptions about network congestion caused by demand surge. Various resilience cases pertain to assumptions about the presence of backup power (for example, batteries or generators), ability to truck in fuel and...
thumbnail
We monitored displacement of the Slumgullion landslide located in Hinsdale County, Colorado. We measured displacement at the ground surface between 12 August 2011 and 10 October 2018, and in the subsurface between 4 September 2016 and 7 December 2016. Both types of data were acquired at irregular time intervals. Displacement at the ground surface was measured at locations within the upper, middle, and lower parts of the landslide using electronic cable extension transducers (extensometers) with stated ±0.7 mm accuracy (Extensometer_data.csv). Subsurface displacement was measured near the middle of the landslide using a 16-sensor array of 30.48-cm-long tilt sensors (inclinometer) installed within a PVC-cased borehole....
In this database, we compile and host several available onshore and offshore geologic, paleoseismic, geophysical, and instrumental datasets along the Cascadia subduction zone. The ScienceBase data release and downloadable map package is accompanied by an ArcGIS online map and StoryMap.


map background search result map search result map Sensor data from debris-flow experiments conducted in June, 2016, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon LiDAR and paleoseismology solve 140-yr old earthquake mystery in the Pacific Northwest USA - source tabular data and images for 1872 Chelan earthquake fault scarp study Data for Frictional Properties and 3-D Stress Analysis of the Southern Alpine Fault, New Zealand (2013) Voice and data telecommunications restoration curves for 17 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock Data from in-situ displacement monitoring, Slumgullion landslide, Hinsdale County, Colorado Lidar data for gate release experiment at the USGS Debris-Flow Flume 24 and 25 May 2017 Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Crustal architecture of the transtensional Warm Springs Valley fault zone, northern Walker Lane Water-level data for the crater lake at the summit of Kīlauea Volcano, Island of Hawaiʻi, 2019–2020 Crater geometry data for Puʻuʻōʻō, on Kīlauea Volcano’s East Rift Zone, in May 2018 Data from Monitoring Volcanic Gases in Plumes and Ambient Air, Newberry Volcano, Oregon Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Soil moisture monitoring following the 2009 Station Fire, California, USA, 2016-2019 Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites Cascadia subduction zone database: compilation of published datasets relevant to Cascadia subduction zone earthquake hazards and tectonics (2022) Data release for the lower seismogenic depth model of western U.S. earthquakes Modified basal contact of the Tertiary Lares Limestone in the vicinity of Utuado, Puerto Rico, USA, derived from USGS Open-File Report 98-038 Plumeria Simulations of 20 December 2020 Kīlauea Volcano Eruption Plume Root thread strength, landslide headscarp geometry, and observed root characteristics at the monitored CB1 landslide, Oregon, USA Sensor data from debris-flow experiments conducted in June, 2016, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon Lidar data for gate release experiment at the USGS Debris-Flow Flume 24 and 25 May 2017 Data from Monitoring Volcanic Gases in Plumes and Ambient Air, Newberry Volcano, Oregon Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Data for Frictional Properties and 3-D Stress Analysis of the Southern Alpine Fault, New Zealand (2013) Water-level data for the crater lake at the summit of Kīlauea Volcano, Island of Hawaiʻi, 2019–2020 Crater geometry data for Puʻuʻōʻō, on Kīlauea Volcano’s East Rift Zone, in May 2018 LiDAR and paleoseismology solve 140-yr old earthquake mystery in the Pacific Northwest USA - source tabular data and images for 1872 Chelan earthquake fault scarp study Crustal architecture of the transtensional Warm Springs Valley fault zone, northern Walker Lane Soil moisture monitoring following the 2009 Station Fire, California, USA, 2016-2019 Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Plumeria Simulations of 20 December 2020 Kīlauea Volcano Eruption Plume Voice and data telecommunications restoration curves for 17 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock Cascadia subduction zone database: compilation of published datasets relevant to Cascadia subduction zone earthquake hazards and tectonics (2022) Data release for the lower seismogenic depth model of western U.S. earthquakes Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites