Skip to main content
Advanced Search

Filters: Tags: {"type":"ISO 19115 Topic Category"} (X) > partyWithName: Alaska Climate Science Center (X) > Extensions: Budget (X)

10 results (18ms)   

View Results as: JSON ATOM CSV
The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project integrated existing models of vegetation, disturbance, and permafrost into one complete ecosystem model for the state of Alaska and Northwest Canada.The final synchronized model will integrate existing climate, vegetation, disturbance, hydrology, and permafrost models to improve understanding of potential landscape, habitat and ecosystem change. The project’s (September 1, 2011 through August 31, 2016) primary goal was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada....
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
The ALCC has asked the U.S. Institute for Environmental Conflict Resolution (U.S. Institute) to assist them in engaging a third-party neutral facilitator who can work with the steering committee to identify key landscape scale resource management needs common to many of the ALCC partners. The overall goals of this project are twofold. One is to identify key future landscape scale resource management and science needs that are common to many of the ALCC partners, and in doing so, increase understanding of future landscape scale information needs among the ALCC steering committee members.
thumbnail
Our overarching questions are: (1) How much of the river water and water-borne constituents (i.e. sediment, nutrients, organic matter) from the Jago, Okpilak and Hulahula rivers are coming from glacier melt? (2) How do inputs from these rivers affect the downstream ecosystems? (3) How will loss of glaciers affect these ecosystems? The study will help elucidate how inputs from glacier-dominated arctic rivers differ from unglaciated rivers, through a combination of ground work, boat work, and remote sensing. In Phase One of this study, we intend to explore the relationship between glaciers and coastal ecosystems. Our goal in this phase-one study is not to answer these questions conclusively but rather improve our...
The project will complete an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work will provide important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, is known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast is not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of...
Categories: Data, Project; Tags: BARRIER ISLANDS, BARRIER ISLANDS, COASTAL LANDFORMS/PROCESSES, COASTAL LANDFORMS/PROCESSES, DEGRADATION, All tags...
thumbnail
The Integrated Ecosystem Model for Alaska project (IEM) uses down-scaled climate models as the drivers of ecosystem change to produce forecasts of future fire, vegetation, permafrost and hydrology regimes at a resolution of 1km. This effort is the first to model ecosystem change on a statewide scale, using climate change input as a major driving variable. The objectives of the IEM project are as follows; to better understand and predict effects of climate change and other stressors on landscape level physical and ecosystem processes, and to provide support for resource conservation planning.The IEM will provide resource managers with a decision support tool to visualize future landscapes in Alaska. Model outputs...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, DYNAMIC VEGETATION/ECOSYSTEM MODELS, DYNAMIC VEGETATION/ECOSYSTEM MODELS, Datasets/Database, Federal resource managers, All tags...
thumbnail
Understanding snow conditions is key to developing a better understanding of hydrologic, biological, and ecosystem processes at work in northern Alaska. The required snow datasets currently do not exist at spatial or temporal scales needed by end users such as scientists, land managers, and policy makers. There are a wide variety of snow datasets that may be generated by this project. The list of desired datasets will be refined based on input from potential end users. However, outputs could include daily spatial distributions spanning the spatial and temporal domains of interest of the following variables: air temperature, wind speed and direction, relative humidity, surface (skin) temperature, incoming solar radiation,...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
The western coastline of Alaska is highly susceptible to coastal storms, which can cause coastal erosion, flooding, and have other pernicious effects to the environment and commercial efforts. The reduction in ice coverage due to climate change could potentially increase the frequency and degree of coastal flooding and erosion. Further, estuaries and delta systems act as conduits for storm surges, so when there is less nearshore ice coverage, these systems could introduce storm surge into terrestrial environments unaccustomed to saline intrusion, flooding, or other alien biogeochemical factors.​This project quantified the effect of reduced nearshore ice coverage on coastal flooding. The project developed a large...
Baseline hydrologic and topographic data in relation to waterfowl productivity is very limited on the Y-K Delta. When considering the potential impacts of climate-driven change to nesting and brood-rearing habitats, these baseline data are important for making informed management decisions. This project takes advantage of a long-term field camp on Kigigak Island to expand instrumentation for monitoring pond water levels and salinities, and tidal dynamics. It will also support elevation surveys and the synthesis of environmental and biological datasets for inclusion in climate change models.


    map background search result map search result map Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Permafrost Database Development, Characterization, and Mapping for Northern Alaska SNOWDATA: Snow Datasets for Arctic Terrestrial Applications (Alaska Arctic LCC Distributed Snow Property Datasets) Development and Application of an Integrated Ecosystem Model for Alaska Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Permafrost Database Development, Characterization, and Mapping for Northern Alaska SNOWDATA: Snow Datasets for Arctic Terrestrial Applications (Alaska Arctic LCC Distributed Snow Property Datasets) Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada