Skip to main content
Advanced Search

Filters: Tags: {"type":"Place"} (X) > Types: GeoTIFF (X) > Types: OGC WMS Service (X)

66 results (154ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Place )
View Results as: JSON ATOM CSV
thumbnail
This dataset contains all the layers associated with U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative for the Upper Peninsula Restoration Assessment (UPRA) which aims to identify and rank coastal areas with the greatest potential for wetland habitat restoration. Each layer has a unique contribution to the identification of restorable wetlands. The 7 parameters (Parameter 0: Mask, Parameter 1: Hydroperiod, Parameter 2: Wetland Soils, Parameter 3: Flowlines, Parameter 4: Conservation and Recreation Lands, Parameter 5: Impervious Surfaces, and Parameter 6: Land Use) and Index Composite directly correlate to areas that are recommended for restoration. The dikes, degree...
thumbnail
Climate grids for the extent of the GNLCC study area saved as asciis with a 2km resolution. These grids are saved in in the Albers Equal Area Conic projection. Summer is defined as months 7-9, while winter is defined as months 1-3. All grids with the exception of cmi.asc, dd5.asc, & growingsl.asc were produced in the program ClimateWNA, which downscales PRISM climate grids using a digital elevation model. Mean annual precipitation (mm) - aprec.asc Annual Climate moisture index (cm/year) - cmi.asc Degree-days > 5°C - dd5.asc Growing season length - growingsl.asc Isothermality (°C) - isotherm.asc Mean annual temperature (°C) - mat.asc Maximum temperature warmest month (°C) - maxtw.asc Minimum temperature coldest...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment B - Lake Ontario...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment G - Lake Ontario...
Aerial images in the vicinity of USGS gaging station #07094500 Arkansas River at Parkdale, Colorado were collected on March 20-22, 2018, using Unmanned Aircraft Systems (UAS, or "drones"). Data were processed using structure-from-motion analysis to generate a three-dimensional point cloud that identifies pixels from multiple images representing the same object and calculates the x, y, and z coordinates of that object/pixel. The point cloud was processed to create a digital surface model of the site. Finally, source images were stitched together based on shared pixels and orthogonally adjusted to create a high resolution (approximately 2 cm pixel size) orthoimage for the study area. The orthomosaic image captures...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
Live tree species basal area from 2000 - 2009 for loblolly pine (Pinus taeda), longleaf pine (Pinus palustris), shortleaf pine (Pinus echinata), and slash pine (Pinus elliottii) clipped to the Gulf Coastal Plains and Ozarks LCC geography.Data were derived from the USFS live tree species basal area of the contiguious United States (2000-2009) Wilson, Barry T.; Lister, Andrew J.; Riemann, Rachel I.; Griffith, Douglas M. 2013. Live tree species basal area of the contiguous United States (2000-2009). Newtown Square, PA: USDA Forest Service, Northern Research Station. Abstract from html metadata for USFS live tree species basal area of the contiguious United States (2000-2009). This data product contains raster maps...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: BIOSPHERE, BIOSPHERE, Basal Area, Conservation planning, Data, All tags...
thumbnail
The Arizona Game and Fish Department (AGFD) recognizes the need for a strong data foundation to inform science-based decisions for fisheries management at a watershed level. In preparation for a shift towards comprehensive watershed-scale planning, AGFD is developing a fisheries data management system with an initial focus on compiling and formatting several hundred thousand fish survey and stocking records. Fish data will be integrated within a Geographic Information System (GIS) by georeferencing observations to an existing national spatial framework (National Hydrography Dataset), which will allow for broader transferability to watersheds shared with neighboring states, creating a seamless layer not limited by...
thumbnail
This publication provides digital flight line data for a high-resolution magnetic and radiometric survey over an area of southeast Illinois, western Kentucky, and southern Indiana. The survey includes airborne geophysical data collected as part of the U.S. Geological Survey (USGS) Earth Mapping Resource Initiative (Earth MRI) effort (Day, 2019). Earth MRI is a cooperative effort between the USGS, the Association of American State Geologists, and other Federal, State, and private sector organizations to improve our knowledge of the geologic framework of the United States. Data for this survey were collected by EON Geosciences under contract with the USGS using a fixed wing aircraft with a magnetometer mounted in...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: AASG, Association of American State Geologists, Ballard County, Caldwell County, Carlisle County, All tags...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Roanoke 30 x 60 minute quadrangle in Virginia. It also covers a part of the Appalachian Basin Province. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2017 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data spatial reference is the WGS 1984 geographic coordinate system. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's mean maximum and minimum January temperature from PRISM 1981-2010 4km data (resampled to 30m resolution). These values, which cover the conterminous United States, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds (https://streamstats.usgs.gov/). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, to retrieve basin...
thumbnail
Aerial photography surveys during and after the 2018 eruption of Veniaminof Volcano, Alaska were conducted to track the evolution of the lava flow field, active volcanic vent, and glacial ice loss from the eruption. Imagery from two surveys was processed with structure-from-motion (SfM) photogrammetric methods to derive the digital elevation models (DEMs) and orthophotos in this data release. The datasets cover the active volcanic cone and intracaldera ice cap, which both show significant topographic and groundcover change between surveys, and relative to previous topographic reference data, due to the 2018 eruption and variable snow and ice cover. A syn-eruption survey on September 26, 2018 was conducted by the...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's percent forested land cover from the National Land Cover Dataset (NLCD) 2016 data (land cover values 41-43). These values, which cover the conterminous United States at a scale of 30m pixel size, will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds ( https://streamstats.usgs.gov/ ). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate...
thumbnail
To better understand how the land is changing and to relate those changes to water quality trends, the USGS funded the production of a Chesapeake Bay Watershed Land Cover Data Series (CBLCD) representing four dates: 1984, 1992, 2001, and 2006. These data were produced by MDA Federal Inc., under contract to the USGS and were derived from Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper satellite imagery. Each of the four datasets consists of 16 land use and land cover classes (Anderson, et al., 1976). The datasets are temporally comparable and encompass the entire Chesapeake Bay watershed and most intersecting counties. The 2001 dataset represents the base layer for the Data Series and is composed...
thumbnail
This dataset is part of the U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative. These data represent the flowline network in the Upper Peninsula Restoration Assessment (UPRA). It is attributed with the number of disconnections (e.g., road crossings) between the reach and Lake Ontario. The more road crossings on a flowline the more disconnected that area is from the lake and the less suitable it will be for restoration. These data help identify the condition of hydrologic separation between potential restoration areas and Lake Ontario. Low numbers represent fewer disconnections, such as culverts, between the reach and the water body requiring no flow network modification...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment H - Lake Ontario...
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
This dataset includes inputs and results for parameterizing the USGS Thornthwaite Monthly Water Balance Model (MWBM) to simulate annual stream permanence on National Hydrography Dataset (NHD) stream reaches. Also included are results from sensitivity analysis of MWBM parameters to final stream permanence classification (permanent or nonpermanent). The dataset includes files that link PRISM climate grids to NHD catchments and flowlines. Data tables describe the sensitivity of MWBM stream permanence classifications to each of the altered MWBM parameters. Suitable MWBM parameter sets, which resulted in accuracy of at least 65% when compared to observed surface water conditions, for modeling stream permanence are presented...


map background search result map search result map A Landscape Approach for Fisheries Database Compilation and Predictive Modeling (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Great northern landscape conservation cooperative climate grids Live Pine Tree Species Basal Area (2000 -2009) in the GCPO LCC (Loblolly, Longleaf, Shortleaf, Slash) Chesapeake bay watershed land cover data series Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Hicks Dome Magnetic Data Orthorectified Mosaic Photograph of a Portion of the Arkansas River at Parkdale, Colorado, March, 2018 Segment B - Flood inundation map geospatial datasets for Lake Ontario, New York Segment G - Flood inundation map geospatial datasets for Lake Ontario, New York Segment H - Flood inundation map geospatial datasets for Lake Ontario, New York Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA Digital elevation models and orthoimagery from the 2018 eruption of Veniaminof, Alaska Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S.: Degree Flowlines Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Orthorectified Mosaic Photograph of a Portion of the Arkansas River at Parkdale, Colorado, March, 2018 Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Digital elevation models and orthoimagery from the 2018 eruption of Veniaminof, Alaska Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Segment G - Flood inundation map geospatial datasets for Lake Ontario, New York Segment H - Flood inundation map geospatial datasets for Lake Ontario, New York Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S.: Degree Flowlines Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) Upper Peninsula, U.S. (ver. 2.0, January 2024) Hicks Dome Magnetic Data Great northern landscape conservation cooperative climate grids A Landscape Approach for Fisheries Database Compilation and Predictive Modeling (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Chesapeake bay watershed land cover data series Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA Live Pine Tree Species Basal Area (2000 -2009) in the GCPO LCC (Loblolly, Longleaf, Shortleaf, Slash) Pre-computed mean January maximum and minimum temperature rasters from PRISM 1981-2010 from the conterminous United States, for the StreamStats Fire-Hydrology application 2021 Precomputed Percent Forested-Area Rasters Derived from NLCD 2016 in Support of the StreamStats Fire-Hydrology Application, Conterminous United States