Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme","scheme":"USGS Thesaurus"} (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X) > partyWithName: U.S. Geological Survey (X)

306 results (88ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment concentration (SSC). The handheld turbidity measurements were regressed against SSC using a repeated median regression to determine a calibration curve for calibrating the turbidity time-series data to SSC. The SSC derived from the...
thumbnail
The accretion history of fringing salt marshes located on the south shore of Cape Cod is reconstructed from sediment cores collected in low and high marsh vegetation zones. These marshes are micro-tidal, with a mean tidal range of 0.442 m. Their location within protected embayments and the absence of large rivers results in minimal sediment supply and a dominance of organic matter contributions to sediment peat. Age models based on 210-lead and 137-cesium are constructed to evaluate how vertical accretion and carbon burial rates have changed over the past century. The continuous rate of supply age model was used to age date 11 cores (10 low marsh and 1 high marsh) across four salt marshes. Both vertical accretion...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In March and April 2023, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to collect topographic and bathymetric data. Images of the beach for...
thumbnail
Note: The 2022 data release "Geospatial Characterization of Salt Marshes in Chesapeake Bay" incorporates the Blackwater region salt marsh dataset. (https://doi.org/10.5066/P997EJYB) This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent...
thumbnail
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rover, were used to constrain the SfM process. Photoscan (v. 1.2-1.4) was used to create a digital elevation model and orthomosaic for each data collection day. Collection of these data was...
thumbnail
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rover, were used to constrain the SfM process. Photoscan (v. 1.2-1.4) was used to create a digital elevation model and orthomosaic for each data collection day. Collection of these data was...
thumbnail
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to a derivation of sediments that have been transported to, and deposited in, a basal bowl-shaped depression since the last glacial maximum. Ninety-two piston, vibra-, and gravity cores with a maximum length of 8.2...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...


map background search result map search result map Collection, analysis, and age-dating of sediment cores from salt marshes on the south shore of Cape Cod, Massachusetts, from 2013 through 2014 Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models Town Neck Beach, Massachusetts, 5 cm 2016-2017 Orthomosaics Geospatial Characterization of Salt Marshes for Massachusetts Elevation of marsh units in Massachusetts salt marshes Mean tidal range of marsh units in Massachusetts salt marshes Intersects for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Ground control points Head of the Meadow Beach, Truro, MA on March 10, 2023 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Ground control points Head of the Meadow Beach, Truro, MA on March 10, 2023 Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models Collection, analysis, and age-dating of sediment cores from salt marshes on the south shore of Cape Cod, Massachusetts, from 2013 through 2014 Intersects for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Geospatial Characterization of Salt Marshes for Massachusetts Mean tidal range of marsh units in Massachusetts salt marshes Elevation of marsh units in Massachusetts salt marshes Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina