Skip to main content
Advanced Search

Filters: Tags: Bathymetry (X) > Types: Citation (X)

313 results (58ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This part of the data release provides the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2005 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. FGDC metadata is also provided. In 2004, 2005, 2007, and 2010 the USGS, PCMSC collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan-sonar system mounded to the USGS R/V Parke Snavely and the USGS R/V Karluk. The research was conducted in coordination with the Swinomish Indian Tribal Community, Skagit River System Cooperative, Skagit Watershed Council, Puget Sound Nearshore...
thumbnail
This data release presents data for 5-m resolution multibeam-bathymetry and acoustic-backscatter data of the northern Channel Islands region, southern California. In 2004 the U.S. Geological Survey, Pacific Coastal and Marine Science Center collected multibeam-bathymetry and acoustic-backscatter data in the northern Channel Islands region, southern California. The region was mapped aboard the R/V Ewing using a Kongsberg Simrad EM-1002 multibeam echosounder. These data were previously published on-line at http://pubs.usgs.gov/of/2005/1153/. In this data release the data have been reprocessed to a finer spatial resolution (5-m versus 15-m) using more modern processing techniques. Due to the large file sizes the entire...
thumbnail
This part of the data release presents a digital elevation model (DEM) created from bathymetry data collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The data were collected by the USGS Pacific Coastal and Marine Science Center (PCMSC) team with collaboration and funding from the U.S. Army Corps of Engineers. This project used interferometric sidescan sonar to characterize the riverbed and channel banks along a 12 mile reach of the Sacramento River, California (River Mile 79 through River Mile 91) to aid in the understanding of fish response to the creation of safe habitat associated with levee restoration efforts in two 1.5 mile reaches of the Sacramento...
thumbnail
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity...
thumbnail
New land-bathymetry and land-lake surface elevation models were produced for the Lake Superior region. The models combine Shuttle Radar Topography Mission (SRTM) topography data with lake surface elevation and bathymetry data sets for Lakes Superior, Michigan, and Huron. The SRTM data set was chosen because it spans the international border and has relatively high resolution at 30 m cell size. These data were subsequently used for aeromagnetic data processing and gravity data reduction.
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
These data were collected as part of the Great Lakes Restoration Initiative (GLRI) project template 678-1 entitled “Evaluate immediate and long-term BMP effectiveness of GLRI restoration efforts at urban beaches on Southern and Western Lake Michigan”. This project is evaluating the effectiveness of projects that are closely associated with restoration of local habitat and contact recreational activities at two GLRI funded sites in Southern Lake Michigan and one non-GLRI site in Western Lake Michigan. Evaluation of GLRI projects will assess whether goals of recipients are on track and identify any developing unforeseen consequences. Including a third, non-GLRI project site in the evaluation allows comparison between...
This is the Original Product Resolution (OPR) Digital Elevation Model (DEM)of a topobathymetric model as provided to the USGS National Geospatial Technical Operations Center (NGTOC). This DEM is delivered in the original resolution, with the original spatial reference as it was provided to the NGTOC. All elevation units have been converted to meters.
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys of the Missouri River near dual bridges structure A4557 on Missouri State Highway 370 near St. Louis, Missouri, in 2010, 2011, and 2016. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys of the Mississippi River near structures A4936/A1850 on Interstate 255 near St. Louis, Missouri, in 2008, 2009, 2010 and 2016. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the horizontal...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
This dataset contains a bare earth digital elevation model (DEM), with a 0.5-square-meter (m2) cell size, of the Cottonwood Lake Study Area, Stutsman County, North Dakota. The DEM was based primarily on airborne lidar data acquired by Fugro Horizons of Rapid City, South Dakota, and made into a DEM by USGS personnel using the ArcGIS extension LP360 (QCoherent Software, 2013). Additional DEM processing to incorporate the bathymetry of study wetlands was done using survey-grade global positioning system (GPS) data collected by soundings of the bottom of each wetland. Through these steps, a continuous elevation model representing both the surrounding uplands and wetland basins was produced for the site (Mushet and Scherff...


map background search result map search result map Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84) High-resolution multibeam bathymetry and backscatter data collected in 2004 for the northern Channel Islands region, southern California UMRR Pool 15 Topobathy UMRR Pool 16 Topobathy Echosounder Points, Neversink Reservoir, 2014 Echosounder Points, Schoharie Reservoir, 2014 Elevation-area-capacity table, Schoharie Reservoir, 2014 Elevation TIN, West Basin Ashokan Reservoir, 2013 to 2015 Bathymetric DEM of the Sacramento River, from the Feather River to Knights Landing, California in February 2011 Cottonwood Lake Study Area – Digital Elevation Model with Topobathy SiteID-005 Snake River at Ferry Butte Road, near Blackfoot, ID UMRR Illinois River Dresden Reach Bathymetry Footprint UMRR Mississippi River Open River North Bathymetry Footprint Site 26 Missouri River Bathymetry and Velocimetry Data at Dual Bridge Structure A4557 on Missouri State Highway 370 near St. Louis, Missouri, October 2010 through May 2016 Site 35 Mississippi River Bathymetry and Velocimetry Data at Structures A4936/A1850 on Interstate 255 near St. Louis, Missouri, October 2008 through May 2016 Bathymetric Soundings in Lake Michigan at 63rd Street Beach (2016) Elevation-bathymetry models for the Lake Superior region GeoTIFF image the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84) High-resolution bathymetry data collected in 2005 in Skagit Bay, Washington SiteID-005 Snake River at Ferry Butte Road, near Blackfoot, ID Site 26 Missouri River Bathymetry and Velocimetry Data at Dual Bridge Structure A4557 on Missouri State Highway 370 near St. Louis, Missouri, October 2010 through May 2016 Bathymetric Soundings in Lake Michigan at 63rd Street Beach (2016) Site 35 Mississippi River Bathymetry and Velocimetry Data at Structures A4936/A1850 on Interstate 255 near St. Louis, Missouri, October 2008 through May 2016 GeoTIFF image the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84) Cottonwood Lake Study Area – Digital Elevation Model with Topobathy Elevation-area-capacity table, Schoharie Reservoir, 2014 Echosounder Points, Schoharie Reservoir, 2014 Echosounder Points, Neversink Reservoir, 2014 High-resolution bathymetry data collected in 2005 in Skagit Bay, Washington UMRR Pool 15 Topobathy UMRR Illinois River Dresden Reach Bathymetry Footprint Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84) UMRR Pool 16 Topobathy High-resolution multibeam bathymetry and backscatter data collected in 2004 for the northern Channel Islands region, southern California UMRR Mississippi River Open River North Bathymetry Footprint Elevation-bathymetry models for the Lake Superior region