Skip to main content
Advanced Search

Filters: Tags: Chile (X) > Types: Citation (X)

31 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset presents information about mineral commodity exporting ports relating to the mineral industries of Latin America and the Caribbean. Port data records were originally derived from the National Geospatial-Intelligence Agency's World Port Index, with additional research conducted by the Material Flow Analysis section of the U.S. Geological Survey's (USGS) National Minerals Information Center (NMIC) to add specific mineral-related data. These ports represent known exporting ports over a time period of 2010-2016 and relevant data fields include the mineral commodities exported, the form of the exported mineral commodity, the port owner, the estimated annual tonnage, destination countries, as well as sources...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as considerable (MMI ≥ VIII) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VIII is equivalent to peak ground acceleration of 0.40g and 1.0-second horizontal spectral acceleration of 0.50g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic...
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as slight (MMI ≥ VI) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VI is equivalent to peak ground acceleration of 0.12g and 1.0-second horizontal spectral acceleration of 0.1g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic data...
thumbnail
Expected average annual losses from earthquakes are determined by using PAGER's vulnerability functions that are unique to each country. There are significant differences in economic losses between countries, which is indicative of their relative vulnerability to earthquakes.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 2 percent probability of exceedance in 50 years.
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. It represents the annual rate of exceedance versus 1.0-second spectral response acceleration.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 50 percent probability of exceedance in 50 years.
thumbnail
Expected average annual fatalities from earthquakes are determined by using PAGER's vulnerability functions that are unique to each country. There are significant differences in fatality rates between countries, which is indicative of their relative vulnerability to earthquakes.
thumbnail
This dataset presents information about facilities relating to the mineral industries of Latin America and the Caribbean. Facilities include mines, mineral processing plants (including refineries and smelters), oil and gas field locations, and petroleum refineries. Relevant data fields include the mineral commodity, specific forms of the mineral commodity produced, location information, facility name, operator, ownership of the facility, annual production capacity, operational status, as well as geographic coordinates and locational accuracy. These data are derived from data presented by country by the Global Minerals Analysis section of the U.S. Geological Survey's (USGS) National Minerals Information Center (NMIC)...
thumbnail
Risk-targeted maximum considered earthquake ground acceleration maps (MCER) are for the design of buildings and other structures. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCER ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic and deterministic values for 1.0-second spectral response acceleration are available here.


map background search result map search result map Mineral facilities of Latin America and the Caribbean Mineral commodity exporting ports of Latin America and the Caribbean 1.0-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years Peak ground acceleration with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years Peak ground acceleration with a 50% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years Mineral facilities of Latin America and the Caribbean Mineral commodity exporting ports of Latin America and the Caribbean