Skip to main content
Advanced Search

Filters: Tags: Climate change (X) > Date Range: {"choice":"month"} (X) > Types: OGC WMS Layer (X)

62 results (10ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Natural resource managers and researchers often need long-term averages of historical and future climate scenarios for their study area yet may not have the resources to make these summaries. This project will provide high quality, detailed maps of historical and projected future climate and hydrologic conditions for California and a finer scale version for southern California. The project will also assess the feasibility of expanding these reference data to the southwestern US and identify the most suitable online data portals for the public to view and analyze the data in support of local initiatives. The map products can be used to assess the impacts of ongoing climate change and to develop climate adaptation...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide nearly $1 billion per year in economic benefits to Southeast Alaska. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth, with a 26-36 percent reduction in total volume expected by the end of the century. This project brought together scientists and managers at a workshop to synthesize the impacts of glacier change on the region’s coastal ecosystems and to determine related research and monitoring needs. Collected knowledge shows that melting glaciers are expected to have cascading effects...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...
thumbnail
A hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. Streamflow and other components of the hydrologic cycle simulated by PRMS were used to inform other types of simulations such as water-temperature, hydrodynamic, and ecosystem-dynamics simulations.
thumbnail
The Climate Adaptation Science Centers (CASCs) partner with natural and cultural resource managers, tribes and indigenous communities, and university researchers to provide science that helps fish, wildlife, ecosystems, and the communities they support adapt to climate change. The CASCs provide managers and stakeholders with information and decision-making tools to respond to the effects of climate change. While each CASC works to address specific research priorities within their respective region, CASCs also collaborate across boundaries to address issues within shared ecosystems, watersheds, and landscapes. These shapefiles represent the 9 CASC regions and the national CASC that comprise the CASC network, highlighting...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
The goals of this project were to: (1) produce a state-of-the-art assessment and synthesis of climate change projections, impacts, vulnerabilities, adaptive capacity, and prospects for mitigation and adaptation actions in the Southwest in support of the regional contribution to the National Climate Assessment; (2) develop an inventory of federal partners and stakeholders involved with climate adaptation programs, and (3) forge stronger bonds between the DOI-SW CSC, the three NOAA-RISAs in the Southwest, and the Landscape Conservation Cooperatives.
thumbnail
Rates of glacier loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth. These changes in glacier volume and extent will affect the flow and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska (GOA). Runoff from glaciers accounts for about half of the land-to-ocean movement of freshwater into the GOA, strongly influencing the freshwater and marine ecosystems along the coast. Runoff from glaciers, for example, significantly impacts the water temperature and clarity of aquatic habitats, which are important conditions for salmon reproduction. Moreover, runoff from glaciers along the GOA is an important factor in the structure of the...
thumbnail
The western coastline of Alaska is highly susceptible to coastal storms, which can cause erosion, flooding, and saltwater storm surge, affecting natural ecosystems, human communities, and commercial activity. Historically, a large buffer of ice along the shoreline has protected this region from some of the more severe effects of coastal storms. However, climate change may not only increase the frequency and intensity of storms, but also cause a loss of shoreline ice, possibly increasing the incidence of coastal erosion and flooding and introducing saltwater to freshwater environments. These hazards have the potential to substantially disrupt the environment and commerce in the region, but more information is needed...
thumbnail
Quaking aspen populations are declining in much of the West due to altered fire regimes, competition with conifers, herbivory, drought, disease, and insect outbreaks. Aspen stands typically support higher bird biodiversity and abundance than surrounding habitat types, and maintaining current distribution and abundance of several bird species in the northern Great Basin is likely tied to the persistence of aspen in the landscape. This project examined the effects of climate change on aspen and associated bird communities by coupling empirical models of avian-habitat relationships with landscape simulations of vegetation community and disturbance dynamics under various climate change scenarios. Field data on avian...
thumbnail
To understand potential climate change impacts on ecosystems, water resources, and numerous other natural and managed resources, climate change data and projections must be downscaled from coarse global climate models to much finer resolutions and more applicable formats. This project conducted comparative analyses to better understand the accuracy and properties of these downscaled climate simulations and climate-change projections. Interpretation, guidance and evaluation, including measures of uncertainties, strengths and weaknesses of the different methodologies for each simulation, can enable potential users with the necessary information to select and apply the models.
thumbnail
As glaciers melt from climate change, their contents – namely, large quantities of freshwater, sediment, and nutrients – are slowly released into coastal ecosystems. This project addressed the impacts of melting glaciers on coastal ecosystems in the Copper River region of the Gulf of Alaska, which is home to several commercially important fisheries. Researchers examined how glacial melting is altering the amount and timing of freshwater that enters the Gulf of Alaska from the Copper River. They also investigated the source and amount of two nutrients, iron and nitrate, dissolved in the water. As a complementary piece of the study, researchers tested the relationship between nutrient levels, plankton populations,...
thumbnail
Many ungulate populations in the Rocky Mountains are predicted to respond to declining snow levels and increased drought, though in ways that remain uncertain. This project investigated how climate change may affect the abundance of Rocky Mountain ungulates, their migration patterns, the degree to which they transmit diseases to livestock, and their herbivory impact on aspen. To complete this work we brought together a team of USGS and University scientists with experience, data, and strong agency collaboration that enabled us to quantify climate impacts and deliver products useful for wildlife managers.
thumbnail
Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming in as much as many cities have already warmed as much, due to heat island effects, as they are expected to warm due to climate change by 2050 or even 2100. We were able to develop good predictive models of how warming influences beneficial and pest insects for cities in the Southeast and across the east coast more generally....


map background search result map search result map Quantifying the Influence of Climate Change on Rocky Mountain Ungulates Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Modeling Western Alaska Coastal Hazards Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. SERAP:  Modeling of Hydrologic Systems Maps of the USGS Climate Adaptation Science Centers (May 2024) Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Rendering High-Resolution Hydro-Climatic Data for Southern California Quantifying the Influence of Climate Change on Rocky Mountain Ungulates Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Quantifying Vulnerability of Quaking Aspen Woodlands and Associated Bird Communities to Global Climate Change in the Northern Great Basin SERAP:  Modeling of Hydrologic Systems The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Impacts of Climate Change and Melting Glaciers on Coastal Ecosystems in the Gulf of Alaska Understanding How Warming Temperatures Will Impact Trees and Insects Using Cities as a Proxy Rendering High-Resolution Hydro-Climatic Data for Southern California Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Modeling Western Alaska Coastal Hazards Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Maps of the USGS Climate Adaptation Science Centers (May 2024)