Skip to main content
Advanced Search

Filters: Tags: Climate change (X)

2,171 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass, productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000–2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region...
thumbnail
The PFLCC has recently completed a set of comprehensive conservation planning scenarios for the state of Florida. This represents the first statewide effort to assess likely alternative futures for conservation considering an array of financial, biological, climatological and urbanistic conditions. These spatially explicit and temporal scenarios simulate both urban growth and climate change and identify the most suitable areas for conservation given the resulting land use pattern. Conservation allocations are based on both fee-title and conservation easements.The conservation priorities and mechanisms expressed in these scenarios are based on a wide set of contributing factors, and simulated conservation is purposefully...
thumbnail
The PFLCC has recently completed a set of comprehensive conservation planning scenarios for the state of Florida. This represents the first statewide effort to assess likely alternative futures for conservation considering an array of financial, biological, climatological and urbanistic conditions. These spatially explicit and temporal scenarios simulate both urban growth and climate change and identify the most suitable areas for conservation given the resulting land use pattern. Conservation allocations are based on both fee-title and conservation easements.The conservation priorities and mechanisms expressed in these scenarios are based on a wide set of contributing factors, and simulated conservation is purposefully...
thumbnail
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables....
thumbnail
Full life-cycle vulnerability assessments are identifying the effects of climate change on nongame migratory birds that are of conservation concern and breed in the upper Midwest and Great Lakes region. Full life-cycle analyses are critical, as current efforts likely underestimate the vulnerability of migratory land birds due to a focus on assessing only one component of the annual cycle. The approach provides a framework for integrating exposure to climate changes, sensitivity to these changes, and the potential for adaptation in both winter and summer seasons, and accounts for carry-over effects from one season to another. The results of this work will inform regional management by highlighting both local and...
thumbnail
For management agencies, there is a growing need to understand (1) how climate change affects and will continue to affect wildlife populations of conservation concern, and (2) how the negative Upper Midwest Great Lakes Landscape Conservation Cooperative Request for Funding 2013 demographic effects of climate change can be mitigated through management strategies. Climate Change Vulnerability Assessment (CCVA) integrates available data and scientific understanding in a transparent process, details assumptions and uncertainties, and ultimately projects population-level responses of target species to future climate change. Climate change is already influencing distributions and abundances of species throughout North...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
These data were compiled for a networked field-trial restoration experiment (RestoreNet) that spans the southwestern US, including 21 distributed field sites. The objective of our study was to understand the environmental factors and restoration practices (including seed mixes and soil manipulation) that increase plant establishment and survival to ultimate improve restoration outcomes in dryland environments. These data represent point-in-time plant density and height measurements at our field sites at the time of monitoring. These data were collected at 21 arid and semi-arid sites, located throughout Arizona, Utah, New Mexico, and California. These data were collected by USGS Restoration Assessment and Monitoring...
Categories: Data; Tags: Arizona, Botany, California, Chihuahuan Desert, Climatology, All tags...
thumbnail
This study examined long-term changes in ground height using Surface Elevation Tables (SETs). Measurements were taken in the floodplains of the Cache River at Buttonland Swamp in southern Illinois. The sites where data was collected included Crawford Tract and Eagle Pond from 2020-2022 and Deer Pond and Snake Hole from 2005-2022.
thumbnail
Soil samples were collected from Lady Bird Johnson Lake, Austin, Texas in 2019 to generate seed bank data for the rare plant Physostegia correllii. Seed germination data was produced from the soil samples kept in a greenhouse at the Wetland and Aquatic Research Center in Lafayette, LA.
thumbnail
Climate change over the past century has altered vegetation community composition and species distributions across rangelands in the western United States. The scale and magnitude of climatic influences are largely unknown. We used fractional component cover data for rangeland functional groups and weather data from the 1985 to 2023 reference period in conjunction with soils and topography data to develop empirical models describing the spatio-temporal variation in component cover. To investigate the ramifications of future change across the western US, we extended models based on historical relationships over the reference period to model landscape effects based on future weather conditions from two emissions scenarios...
Tags: AB, AZ, Alberta, Arizona, Arizona Plateau, All tags...
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections for San Francisco County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods...
thumbnail
This dataset contains projections for San Mateo County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...


map background search result map search result map The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Publication: A blind spot in climate change Report: Climate Change Vulnerability Assessment for Species of Conservation Concern: Distributions and Demographics Across a Landscape Conservation Cooperative Publication: Measuring and managing resistance and resilience under climate change in northern Great Lake forests Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region Habitat Grids Statewide Impact Assessment Reports Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 - San Francisco County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County RestoreNet subplot data for 21 sites within major dryland ecoregions throughout the southwestern United States, 2018 - 2021 Data Release: Seed banks of rare Physostegia correllii in Lady Bird Johnson Lake, Austin, Texas Data Release: Buttonland Swamp, SET data Projections of Rangeland Fractional Component Cover Across Western Northern American Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods Data Release: Seed banks of rare Physostegia correllii in Lady Bird Johnson Lake, Austin, Texas CoSMoS v3.1 - San Francisco County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Habitat Grids Statewide Impact Assessment Reports RestoreNet subplot data for 21 sites within major dryland ecoregions throughout the southwestern United States, 2018 - 2021 Publication: Measuring and managing resistance and resilience under climate change in northern Great Lake forests Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region Publication: A blind spot in climate change Report: Climate Change Vulnerability Assessment for Species of Conservation Concern: Distributions and Demographics Across a Landscape Conservation Cooperative Projections of Rangeland Fractional Component Cover Across Western Northern American Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods