Skip to main content
Advanced Search

Filters: Tags: Coastal and Marine Hazards and Resources Program (X) > Date Range: {"choice":"year"} (X) > Types: Map Service (X)

63 results (42ms)   

View Results as: JSON ATOM CSV
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2023 (USGS Field Activity Number 2023-644-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed...
thumbnail
Time series data of wave height and water surface elevation were acquired for 100 days at three locations off of the island of Nanumanga, three locations off of the island of Nanumea, three locations off of the island of Nui, two locations off of the island of Nikulaelae, and two locations off of the island of Niulakita, in the island nation of Tuvalu, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reefs were as follows: TVL19NG3, TVL19NM1, TVL19NU1, TVL19NK1 and TVL19NL1 – offshore TVL19NG1, TVL19NM2 and TVL19NU2 – reef crest TVL19NG3, TVL19NM3, TVL19NU3, TVL19NK2 and TVL19NL2 – reef...
thumbnail
Time series data of wave height and water surface elevation were acquired for 147 days at four locations off of the north coast and four locations off the south coast of Buck Island, U.S. Virgin Islands, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reefs were as follows: BUI15S1T and BUI15N1T – fore reef BUI15S2T and BUI15N2T – outer reef flat BUI15S3T and BUI15N3T – middle reef flat BUI15S4T and BUI15N4T – inner reef flat
thumbnail
This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in August 2022 (USGS Field Activity 2022-638-FA). Surface sediment was collected from 67 locations using a small ponar, or 'grab', sampler from the R/V Frontier in water depths between about 1 and 17 m around the delta. An additional 44 samples were collected by hand at low tide. A hand-held global satellite navigation system (GNSS) receiver was used to determine the locations of sediment samples. The grain size distributions of suitable samples were determined using standard techniques developed by the USGS Pacific Coastal and Marine Science Center sediment lab. Grab samples that yielded...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Time-series data of water surface elevation, waves, currents, temperature, and salinity collected between 17 May 2017 and 17 Jan 2018 off the southwest coast of Puerto Rico in support of a study on circulation and sediment transport dynamics over coral reefs. The data are available in NetCDF format, grouped together in zip files by instrument site location. A README.txt file details the files contained within each zip, including the file names, type of data collected, instrument that collected the data, depth, and start and end dates/times.
thumbnail
Time series data of wave height and water surface elevation were acquired at ten locations for 75 days south of Lahaina, off of the west coast of the island of Maui, Hawaii, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reefs were as follows: MAU17TP1 and MAU17LA1 – middle fore reef MAU17TP2 and MAU17LA2 – upper fore reef MAU17TP3 and MAU17LA3 – outer reef flat MAU17TP4 and MAU17LA4 – middle reef flat MAU17TP5 and MAU17LA5 – inner reef flat
thumbnail
Time series data of wave height and water surface elevation were acquired for 147 days at eleven locations, in two cross-reef transects, off of the west coast of Rincon, Puerto Rico, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reef were as follows: PRI19N01 – offshore reef crest, north transect PRI19N02, PRI19N03 – offshore reef flat, north transect PRI19S03 – offshore reef flat, south transect PRI19N04, PRI19N05 and PRI19N06 – inner reef flat, north transect PRI19S04, PRI19S05, PRI19S06, PRI19S07 and PRI19S08 – inner reef flat, south transect
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2022 (USGS Field Activity Number 2022-641-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2019 (USGS Field Activity Number 2019-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon in 2017 (USGS Field Activity Number 2017-666-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9 degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
Geologic structure and isopach maps were constructed by interpreting over 19.890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York and James Rivers and tributaries, in addition to a broad drainage system. These regional unconformities form a composite unconformity interpreted as the Quaternary-Tertiary (Q-T) unconformity. A depth to Tertiary...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 32-bit GeoTIFF, Applied Acoustics S-Boom Source, Assateague Island, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2021 (USGS Field Activity Number 2021-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon in 2018 (USGS Field Activity Number 2018-652-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9 degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during...
thumbnail
Note: this data release has been depecrated. Find the updated version here: https://doi.org/10.5066/P9MAJHNI This data release includes grain-size measurements of sediment samples collected from the substrate surface and uppermost 10 cm of sediment deposits in the Klamath estuary, northern California. Samples were collected using a BMH-60 bed-material sampler deployed from a boat, or by hand trowel from subaerial or shallow-water (less than 0.5 m water depth) regions along the estuary margins and side channels. Sediment grain size was analyzed at the U.S. Geological Survey (USGS) laboratory in Santa Cruz, Calif. Particles coarser than 2 mm were sieved using a RO-TAP sieve shaker, and particles finer than 2 mm were...
thumbnail
Time series data of wave height and water surface elevation were acquired for 135 days at six locations off of the west coast of Rincon, Puerto Rico, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reef were as follows: PRI20N01 – offshore PRI20N02 and PRI20N03 – fore reef PRI20N35, PRI20N04 and PRI20N45 – reef flat
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Boston, Massachusetts, CMHRP, Coastal and Marine Hazards and Resources Program, Esri point shapefile, All tags...
thumbnail
High-resolution single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007 from San Francisco to San Gregorio, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar, during field activity F-02-07-NC. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and recorded with a Triton SB-Logger.