Skip to main content
Advanced Search

Filters: Tags: Disturbance (X) > Types: Map Service (X) > Types: Downloadable (X)

49 results (47ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Borehole nuclear magnetic resonance (NMR) data were collected at two sites in order to determine liquid water content at depth in shallow boreholes. NMR data were collected in a 2.25 m-deep borehole at the North Star golf course adjacent to one of the ERT profiles, and in another two 1.625 m-deep boreholes adjacent to Big Trail Lake where previous NMR measurements were made in 2019 and 2020.
thumbnail
This geodatabase contains all freely available spatial information on pipelines in the Crown of the Continent area. Due to the free nature of the data, it is of mixed quality and should not be considered inclusive of all pipelines actually in the region.
This data set was created to facilitate the BLM Greater Sage-Grouse Land Use Planning Strategy in the Utah Sub-Region. This data was developed and addressed, and used during preparation of an environmental impact statement to consider amendments to 14 BLM land use plans throughout the State of Utah, as well as 6 Forest Service land use plans. This planning process was initiated through issuance of a Notice of Intent published on December 6, 2011. This dataset is associated with the Final Environmental Impact Statement, released to the public via a Notice of Availability on May 29, 2015. The purpose of the planning process is to address protection of greater sage-grouse, in partial response to a March 2010 decision...
This data set includes the relative production scenarios for bufflaograss [0.72(Temp) - 0.12(Precip) - 0.04(Sand) + 3.08]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et al., 2011), and hotter-drier...
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Current data layers were created from data originally produced the USGS(LULC and Carbon projections), called 'CONUS_Historical_2005' and 'CONUS_A2_2050'. Source of original data: Sohl, T.L., Sayler, K.L., Bouchard, M.A., Reker, R.R., Friesz, A.M., Bennett, S.L., Sleeter, B.M., Sleeter, R.R., Wilson, T.S., Knuppe, M., and Van Hofwegen, T., In Press. Spatially explicit modeling of 1992 to 2100 land cover and forest stand age for the conterminous United States. Ecological Applications: http://dx.doi.org/10.1890/13-1245.1 To create the current layer, NLCD classifications within original file were reclassified as follows: 1=Developed (2), 50=Mechanically Disturbed (3,4,5), 101=Agriculture (13,14). All other values converted...
This data set includes the relative production scenarios for sideoats grama [1.13(Temp) + 0.41(Precip) - 0.004(Precip)^2- 0.07(Sand) - 12.3]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et...
This data set includes the relative production scenarios for little bluestem [0.26(Precip) - 4.04]; this is the model from Epstein, et al. (1998). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided processed soils data from NRCS (gSSURGO), mean annual temperature (Celsius) and/or mean annual precipitation (millimeters) came from contemporary (1981 - 2010) estimates (Maurer et al. 2002) or a GCM. Global Climate Models (GCM) providing scenarios included: warmer-wetter scenario (CESM1-BGC, RCP4.5, Neale et al., 2010), warmer drier scenario (GISS-E2-R, RCP4.5, Schmidt, 2014), hotter-wetter scenario (Miroc-ESM, RCP8.5, Watanabe et al., 2011), and hotter-drier scenario (ACCESS...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In July 2018, soil temperature and moisture sensors were installed at six out of the nine instrument locations (APEX1, APEX2, APEX3, APEX4, APEX7, APEX9). Thermistors (PS103J2, US Sensor, Orange, CA, USA) were placed at depths of 5, 30, 60, 120, and 180 centimeters (cm) with three replicates. Three sites (APEX1, APEX4, APEX9) contained an additional single...
thumbnail
Shapefile of a set of fires sampled from the GNLCC Large Fire Database, 1984-2011. This sampled was collected from across the total variability in climate within the Great Northern Landscape Conservation Cooperative (GNLCC) study area. Additional detail about the topography, climate, and burn severity was collected for this identified sample, and used to model fire refugia and low-severity burn probability within the fire perimeters.Each fire has a unique numeric identifier of “PolyID”. Additional attributes are as follows:FIRE_ID: For those fires with an ID, the ID assigned by the reporting agency of the MTBS project.FIRENAME: Names of those fires which are named. This is uncommon in Canada.YEAR: The year the fire...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Borehole nuclear magnetic resonance (NMR) data were collected by the U.S. Geological Survey (USGS) at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify unfrozen water content and soil properties at select sites in and around the lake edge. In September 2019, NMR data were collected within two 2.3 m deep boreholes adjacent to the East and North perpendicular electrical resistivity survey lines. Manual permafrost-probe measurements of thaw depths were also collected. These two boreholes were logged a second time in late March 2020. Additional one-time NMR measurements of liquid water content were collected in September 2019 within the lakebed sediments (0-25 cm depth) in approximately 2.5...
thumbnail
This layer depicts the status, or degree of disturbance, to plant communities on the main Hawaiian Islands. Several layers were uset to create this version (v 3.4). The original HabQual layer was developed by Jon Price and Jim Jacobi based on the mapped land cover units from the Hawaii GAP analysis program (Gon et al. 2006). This map was revised by combining data on land use and the “Bare” category from the NOAA C-CAP 2005 map (NOAA National Ocean Service Coastal Services Center 2012), and adding road corridors to the heavily disturbed category based on the Tiger Roads layer (United States Census Bureau 2014). Additionally, corrections were made to this version of the map by visually inspecting previously mapped...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Humans have dramatically altered wildlands in the western United States over the past 100 years by using these lands and the resources they provide. Anthropogenic changes to the landscape, such as urban expansion, construction of roads, power lines, and other networks and land uses necessary to maintain human populations influence the number and kinds of plants and wildlife that remain. We developed the map of the human footprint for the western United States from an analysis of 14 landscape structure and anthropogenic features: human habitation, interstate highways, federal and state highways, secondary roads, railroads, irrigation canals, power lines, linear feature densities, agricultural land, campgrounds, highway...
thumbnail
These layers represents relative landscape connectivity in the Middle Rockies Ecoregion of the United States. It was developed as part of the Bureau of Land Management’s (BLM) Rapid Ecological Assessment (REA) of this region. Connectivity is defined as the percent of unfragmented landscape (percent area of similar habitat) in a 1 km neighborhood based on ReGAP or GAP land cover data. Values <15% are classified as ‘Low’ connectivity, values of 15-30% are classified as ‘Fair’ connectivity, and values >30% are classified as ‘Good’ connectivity.
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument sites were established in April 2018, seven of which were given a borehole approximately 2.3 meters (m) deep for repeat nuclear magnetic resonance (NMR) logging to quantify unfrozen water content and soil properties in the near surface. NMR data were collected from each borehole a total of ten times between April 2018 and October 2020, at a...


map background search result map search result map GNLCC Refugia Project Sampled Fires The Human Footprint in the West Middle Rockies REA Connectivity Analysis for Shrublands and Grasslands Pipelines in the Crown of the Continent Ecosystem Land Use/Land Cover: Projected Anthropogenic Disturbance Change 2005-2050 BLM UT Preliminary Disturbance Inventory Polygon Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Electrical Resistivity Tomography Inverted Models; Alaska, 2015 Carbon Assessment of Hawaii Habitat Status Map (CAH_HabStatus) Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 APEX Borehole Nuclear Magnetic Resonance (NMR) Data and Models from 2018-2020 APEX Soil Temperature and Moisture Data from 2018-2020 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 APEX Borehole Nuclear Magnetic Resonance (NMR) Data and Models from 2018-2020 APEX Soil Temperature and Moisture Data from 2018-2020 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Inverted Models; Alaska, 2015 Pipelines in the Crown of the Continent Ecosystem Carbon Assessment of Hawaii Habitat Status Map (CAH_HabStatus) BLM UT Preliminary Disturbance Inventory Polygon Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Land Use/Land Cover: Projected Anthropogenic Disturbance Change 2005-2050 Middle Rockies REA Connectivity Analysis for Shrublands and Grasslands GNLCC Refugia Project Sampled Fires The Human Footprint in the West