Skip to main content
Advanced Search

Filters: Tags: Drought (X) > Date Range: {"choice":"year"} (X) > Types: Citation (X)

62 results (617ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
The responses of individual species to environmental changes can be manifested at multiple levels that range from individual-level (i.e., behavioral responses) to population-level (i.e., demographic) impacts. Major environmental changes that ultimately result in population level impacts are often first detected as individual-level responses. For example, herbivores respond to limited forage availability during drought periods by increasing the duration of foraging periods and expanding home range areas to compensate for the reduction in forage. However, if the individual-level responses are not sufficient to compensate for reduced forage availability, reduced survival and reproductive rates may result. We studied...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174045): Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM,...
Abstract (from ScienceDirect): Paleohydrologic records can provide unique, long-term perspectives on streamflow variability and hydroclimate for use in water resource planning. Such long-term records can also play a key role in placing both present day events and projected future conditions into a broader context than that offered by instrumental observations. However, relative to other major river basins across the western United States, a paucity of streamflow reconstructions has to date prevented the full application of such paleohydrologic information in the Upper Missouri River Basin. Here we utilize a set of naturalized streamflow records for the Upper Missouri and an expanded network of tree-ring records...
Streams are classified as perennial (flowing uninterrupted, year-round) or intermittent (flowing part of the year) or ephemeral (flowing only during rainfall events). The classifications of “streamflow permanence” were primarily established in the middle 20th century and are often outdated and inaccurate today if they were not adjusted for changes in land use, wildfires, or climate. Understanding where streams are perennial is important for a variety of reasons. For example, perennial streams receive special regulatory protections under a variety of statutes, and provide important habitat for fish, wildlife, and other species. To predict the likelihood that streams are perennial, we compiled nearly 25,000 observations...
Abstract (from RMetS): Over the Upper Colorado River basin (UCRB), temperatures in widely used gridded data products do not warm as much as mean temperatures from a stable set of U.S. Historical Climatology Network (USHCN) stations, located at generally lower elevations, in most months of the year. This is contrary to expectations of elevation‐dependent warming, which suggests that warming increases with elevation. These findings could reflect (a) a genuine absence of elevation‐dependent warming in the region, (b) systematic non‐climatic influences on either the USHCN stations or high‐elevation stations, including known inhomogeneities related to changes in the time of observation and instrumentation, or (c) suppression...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015GL067613/full): This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture...
Abstract (from AMS): The upper Colorado River basin (UCRB) is one of the primary sources of water for the western United States, and increasing temperatures likely will elevate the risk of reduced water supply in the basin. Although variability in water-year precipitation explains more of the variability in water-year UCRB streamflow than water-year UCRB temperature, since the late 1980s, increases in temperature in the UCRB have caused a substantial reduction in UCRB runoff efficiency (the ratio of streamflow to precipitation). These reductions in flow because of increasing temperatures are the largest documented temperature-related reductions since record keeping began. Increases in UCRB temperature over the past...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from ScienceDirect): The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided...
As the Earth’s climate changed in the ancient past, many species moved across the landscape to track adequate environmental conditions. Some species took shelter in remaining pockets of suitable climates, referred to as refugia. For example, refugia harbored species when vast glaciers covered much of the land, allowing them to survive and migrate again across the landscape as temperatures warmed and ice melted. Modern changes in climate are similarly compelling species to move, and some of those species may seek shelter from increasingly hostile conditions in refugia. Modern climate refugia will likely take many different forms. For example, larger-scale macrorefugia may be areas of relative climate stability that...
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project is to assess the information...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-13-0167.1): Drought indices are often used for monitoring interannual variability in macroscale hydrology. However, the diversity of drought indices raises several issues: 1) which indices perform best and where; 2) does the incorporation of potential evapotranspiration (PET) in indices strengthen relationships, and how sensitive is the choice of PET methods to such results; 3) what additional value is added by using higher-spatial-resolution gridded climate layers; and 4) how have observed relationships changed through time. Standardized precipitation index, standardized precipitation evapotranspiration index (SPEI), Palmer drought severity index,...
Abstract (from http://iopscience.iop.org/article/10.1088/1748-9326/11/8/084009/meta): Record low snowpack conditions were observed at Snow Telemetry stations in the Cascades Mountains, USA during the winters of 2014 and 2015. We tested the hypothesis that these winters are analogs for the temperature sensitivity of Cascades snowpacks. In the Oregon Cascades, the 2014 and 2015 winter air temperature anomalies were approximately +2 °C and +4 °C above the climatological mean. We used a spatially distributed snowpack energy balance model to simulate the sensitivity of multiple snowpack metrics to a +2 °C and +4 °C warming and compared our modeled sensitivities to observed values during 2014 and 2015. We found that for...
A new satellite-derived low cloud retrieval reveals rich spatial texture and coherent space-time propagation in summertime California coastal low cloudiness (CLC). Throughout the region, CLC is greatest during May–September but has considerable monthly variability within this summer season. On average, June is cloudiest along the coast of southern California and northern Baja, Mexico, while July is cloudiest along northern California's coast. Over the course of the summer, the core of peak CLC migrates northward along coastal California, reaching its northernmost extent in late July/early August, then recedes while weakening. The timing and movement of the CLC climatological structure is related to the summer evolution...
The responses of individual species to environmental changes can be manifested at multiple levels that range from individual-level (i.e., behavioral responses) to population-level (i.e., demographic) impacts. Major environmental changes that ultimately result in population level impacts are often first detected as individual-level responses. For example, herbivores respond to limited forage availability during drought periods by increasing the duration of foraging periods and expanding home range areas to compensate for the reduction in forage. However, if the individual-level responses are not sufficient to compensate for reduced forage availability, reduced survival and reproductive rates may result. We studied...
Abstract: Population persistence across broad spatial scales (e.g., watersheds) can depend on asynchronous dynamics among populations at finer scales (e.g., streams or habitats). We applied a von Bertalanffy growth model and closed N‐mixture abundance model in a hierarchical Bayesian framework to examine effects of fine‐scale variability in temperature and density dependence on growth and abundance as well as within‐ versus among‐stream variability in growth and abundance of Rio Grande Cutthroat Trout Oncorhynchus clarkii virginalis (RGCT) in northern New Mexico streams. An accumulation of degree‐days positively influenced instantaneous growth rates and, to a lesser extent, negatively affected asymptotic body length....
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/joc.4127/abstract): Gridded topoclimatic datasets are increasingly used to drive many ecological and hydrological models and assess climate change impacts. The use of such datasets is ubiquitous, but their inherent limitations are largely unknown or overlooked particularly in regard to spatial uncertainty and climate trends. To address these limitations, we present a statistical framework for producing a 30-arcsec (∼800-m) resolution gridded dataset of daily minimum and maximum temperature and related uncertainty from 1948 to 2012 for the conterminous United States. Like other datasets, we use weather station data and elevation-based predictors of temperature,...